Découvrez notre nouvelle Chaîne YouTube "Ingénierie & Bourse"

Objectifs

  • Savoir la technique de discrétisation d’une fonction de transfert décrite dans le domaine de Laplace H(p)
  • Savoir la fonction de transfert inverse d’un dérivateur du 1ère et 2nd ordre
  • Savoir 3 techniques de discrétisation de la dérivée 1ère en utilisant les différences finies
  • Etc.

Approximations de la dérivée première

Le polynôme du numérateur d’une fonction de transfert H(p)=Y(p)/X(p) est constitué par une combinaison linéaire de dérivation de l’entrée (voir la vidéo pour plus de détails).

Approximation par une différence finie en avance: Forward

h est la période d’échantillonnage

l’erreur absolue de l’approximation est proportionnelle à h/2

Approximation par une différence finie Forward 

Approximation par une différence finie en retard: Backward

l’erreur absolue de l’approximation est proportionnelle à h/2

Approximation par une différence finie backward

Approximation par une différence finie centrée: Center

l’erreur absolue de l’approximation est proportionnelle à h²/6

Approximation par une différence finie centrée

Méthode des différences finies

En analyse numérique, la méthode des différences finies est une technique courante de recherche de solutions approchées d’équations aux dérivées partielles qui consiste à résoudre un système de relations (schéma numérique) liant les valeurs des fonctions inconnues en certains points suffisamment proches les uns des autres. Lire la suite…

Implémentation avec Arduino

L’implémentation sur Arduino des trois approximations sera abordée dans la vidéo prochaine avec des exemples pratiques.

Accueil Asservissement avec Arduino


0 commentaire

Laisser un commentaire

Avatar placeholder

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Anti-Robot *

You have successfully subscribed to the newsletter

There was an error while trying to send your request. Please try again.

FPGA | Arduino | Matlab | Cours will use the information you provide on this form to be in touch with you and to provide updates and marketing.