CIRCUITS RADIO TELECOMMUNICATIONS

Licence Professionnelle

Philippe BOUYSSE

IUT du Limousin - Département GEII Brive

bouysse@brive.unilim.fr Dernière mise à jour : 17 décembre 2007

Table des matières

•	INTI	RODUCTION	4
H A	LES	TRANSISTORS EN HAUTES FREQUENCES	8
	II.1	Introduction	9
11/10	II.2	Le transistor à effet de champ	13
	II.3	Le transistor bipolaire	23
Ш.,	LES	AMPLIFICATEURS DE PUISSANCE	31
	111.1	Caractéristiques des amplificateurs	32
Me. It	III.2	Classes de fonctionnement	48
A VIEL	III.3	Principes d'adaptation d'impédance	75
	111.4	Conception des circuits d'adaptation	86
e	III.5	Conception des circuits de polarisation	95
			and the second
IV .	LES	MELANGEURS	101
	IV.1	Principe de l'opération de mélange	102

Exercices

Table des matières Concepts Notions Bibliographie

IV.2	Spécifications des mélangeurs	109
IV.3	Exemples de circuits	123
IV.4	Applications des mélangeurs	136
		1
Exercice	s i la constante de la constante	145
A.1	Amplification de puissance	146
A 2	Adaptation d'impédance	153

3

Table des matières Concepts Notions Bibliographie

Exercices

A

Chapitre I INTRODUCTION

INTRODUCTION

Ce cours intitulé *Circuits Radio Télécom* (CRT) a pour objectif de présenter les principes fondamentaux des fonctions électroniques couramment utilisées dans le domaine des télécommunications. Ces fonctions électroniques peuvent être regroupées en quatre familles distinctes qui sont :

- L'amplification
- Le mélange
- La génération de signaux
- Le filtrage

Les *fonctions électroniques* de ce quatres familles constituent les briques de base des parties analogiques HF des systèmes de télécommunications.

Table des matières Concepts Notions Bibliographie

L'amplification

Concernant l'amplification, on distingue deux types d'amplificateurs :

- Les amplificateurs faible bruit (LNA : Low Noise Amplifier)
 Ces amplificateurs sont utilisés à l'entrée des récepteurs. Ils permettent d'amplifier le signal reçu par une antenne. Ils doivent être trés linéaires et présenter un gain important ainsi qu'un facteur de bruit minimum.
- Les amplificateurs de puissance (SSPA : Solid State Power Amplifier)
 - Ces amplificateurs sont placés en sortie des émetteurs et permettent de fournir la puissance nécessaire à l'antenne d'émission. Ces circuits doivent répondre à des critères de puissance, de gain, de rendement et de linéarité en fonction de l'application visée.

Le mélange

Basiquement, un *mélangeur* (mixer) est un circuit permettant de réaliser l'opération de multiplication de deux signaux quelconques. Les mélangeurs permettent de réaliser des fonctions de traitement du signal et trouvent de multiples applications :

5

- Conversion de fréquence (up-converter et down-converter)
- Modulateur et démodulateur DBLPS (Double Bande Latérale Porteuse Supprimée)
- Modulateur et démodulateur BPSK (Binary Phase Shift Keying)
- Modulateur et démodulateur IQ
- Comparateur de phase
- etc...

On peut les classer en deux grandes familles :

- Les mélangeurs passifs à base de diodes
- Les mélangeurs actifs à base de transistors

Table des matières Concepts Notions Bibliographie

Exercices

La génération de signaux

Dans le domaine des télécommunications, les fréquences intermédiaires HF et les fréquences porteuses microondes sont issues de sources sinusoïdales. Les critéres de qualité d'une source sont entre autre sa stabilité et sa pureté spectrale (bruit de phase). La génération de signaux peut être réalisée en utilisant divers circuits :

- Oscillateurs fixes (quartz, résonateur, circuit résonant ...)
- Oscillateurs variables (VCO : Voltage Controlled Oscillator)
- Boucle à verrouillage de phase (PLL : Phase Locked Loop)
- Synthétiseurs de fréquence
- Synthèse numérique directe (DDS : Direct Digital Synthesizer)

Le filtrage

On rencontre des filtres de fréquence dans tous les systèmes de télécommunications. Le *filtrage* peut être numérique sur les signaux en bande de base (utilisation de DSP¹) ou analogique pour les signaux HF et microondes. Les techniques de filtrage sont multiples et la liste ci-après n'est pas exhaustive :

- Filtres à quartz
- Filtres à ondes de surface (SAW)
- Filtres à résonateurs diélectrique
- Filtres à cavité résonante (guide d'onde)
- etc...

Dans cette version du cours, seront abordés les amplificateurs de puissance et les mélangeurs. Ce cours présente des connaissances de base des circuits radio télécom et s'adresse à des étudiants de 2° année d'IUT GEII et de Licence Professionnelle Télécommunications.

¹Digital Signal Processor

Table des matières Concepts Notions Bibliographie

Exercices

Les ouvrages [1], [2], [3], [4], [5] permettront d'approfondir les notions de base abordées dans ce cours et d'en aborder de nouvelles.

7

Table des matières Concepts Notions Bibliographie

Chapitre II LES TRANSISTORS EN HAUTES FREQUENCES

II.1	Introduction
11.2	Le transistor à effet de champ 13
II.3	Le transistor bipolaire

Table des matières Concepts Notions Bibliographie

II.1 Introduction

Les transistors utilisés en HF et hyperfréquences sont, comme en basses fréquences, soit des transistors bipolaires soit des transistors à effet de champ. De façon non exhaustive, voici quelques repères concernant la technologie de ces composants, leurs applications et leurs domaines de fréquence.

Les transistors bipolaires

- Silicium (Si):

Fréquence maximale d'utilisation : quelques GHz Applications de puissance (amplificateurs stations de base) et trés fortes puissances (KW) (radars , fonctionnement en impulsions)

 Arsémiure de Gallium (AsGa ou GaAs): Transistors HBT (Hétérojunction Bipolar Transistor), Fréquence maximale d'utilisation de 10 à 20 GHz
 Applications de faible et movemen puissenese

Applications de faible et moyenne puissances.

Table des matières Concepts Notions Bibliographie

section suivante >

Les transistors à effet de champ

- Silicium (Si):

Fréquence maximale d'utilisation : quelques GHz

Applications de puissance (amplificateurs stations de base) et trés fortes puissances (MOS-FET)

- Arsémiure de Gallium (AsGa): Transistors MESFET : 10 à 20 GHz Transistors HEMT et PHEMT : >10 GHz Applications de faible et moyenne puissances.
- *Matériau grand gap* : GaN (Nitrure de Gallium). Applications de puissance , technologies nouvelles actuellement en développement.

Quelque soit le type de composant utilisé (bipolaire ou TEC), le fonctionnement de base (c.a.d l'effet transistor fondamental) est identique à celui des composants utilisés dans le domaine des basses fréquences. Ce qui complique significativement les schémas électriques et par conséquent l'analyse des circuits en hautes fréquences, ce sont :

- d'une part *les éléments parasites intrinsèques* au composant qui ne sont plus négligeables en HF (capacités)
- d'autre part *les éléments d'accès* parasites (boitier, bondings...) dûs à la connexion de la puce au boitier.

Par ailleurs, quelque soit le type de composant, on peut distinguer trois représentations d'un transistor ayant chacune leurs spécificités. Ces différentes représentations permettent toutes de modéliser le comportement électrique du composant.

Table des matières Concepts Notions Bibliographie

Le Modèle Boîte noire Avec ce modèle, le transistor est représenté par un quadripôle (*boîte noire*) décrit par une matrice. Cela peut être une matrice impédance (Z), admittance (Y), hybride (h), de répartition (matrice S), chaine (A) etc... Ces matrices décrivent le comportement *petit signal* (linéaire) du composant en fonction de la fréquence et ceci pour un point de polarisation donné. Ces matrices sont souvent issues directement de la mesure.

- Interêt : rapide d'utilisation, modèle indépendant de la structure interne du composant.
- Inconvénient : valable uniquement pour un *fonctionnement linéaire*, matrice définie pour un seul point de polarisation.

Le Modèle Petit Signal ou Linéaire Ce *modèle "petit signal"* est un schéma électrique constitué de résistances, d'inductances, de capacités et de sources commandées. Il reproduit le fonctionnement du transistor en *régime linéaire* autour d'un point de polarisation. Ce modèle est obtenu en linéarisant le modèle "grand signal" présenté dans le paragraphe suivant.

- Interêt : modélisation de la structure interne du composant.
- Inconvénient : valable uniquement pour un fonctionnement linéaire.

Le Modèle Grand Signal ou Non-Linéaire Ce *modèle "grand signal"* est lui aussi un schéma électrique constitué de résistances, d'inductances, de capacités et de sources commandées. Il reproduit le *fonctionnement non-linéaire* du transistor. Ce modèle permet de simuler le fonctionnement de circuits tels que les amplificateurs de puissance, les oscillateurs et les mélangeurs. Les éléments non-linéaires de ce modèle sont essentiellement des sources de courant commandées, des diodes et des capacités. Ces éléments sont le plus souvent décrits par des équations non-linéaires.

- Interêt : modélisation de la structure interne du composant, fonctionnement non-linéaire quelque soit le point de polarisation.

11

Table des matières Concepts Notions Bibliographie

Exercices

- Inconvénient : modèle le plus difficile à réaliser.

On trouve dans l'ouvrage de G. Massobrio et P. Antognetti [3], des descriptions très détaillées du fonctionnement des transistors (FET, MOSFET, Bipolaire, diode) ainsi que les modèles utilisés dans les simulateurs de circuits.

Table des matières Concepts Notions Bibliographie

II.2 Le transistor à effet de champ

II.2.1	Les caractéristiques statiques du FET	14
II.2.2	Le schéma électrique grand signal du FET	17
II.2.3	Le schéma électrique petit signal du FET	19

Table des matières Concepts Notions Bibliographie

section 🔺 suivant 🕨

II.2.1 Les caractéristiques statiques du FET

FIG. II.2.1 – Symbole du transistor FET

Pour un *transistor à effet de champ*, les tensions de commande sont : V_{GS} et V_{DS} . Les réponses sont les courants I_G et I_D .

Remarque : Il est à noter que le courant I_G est à priori nul en continu, seule sa composante à la fréquence fondamentale est utile pour déterminer la puissance d'entrée.

La caractéristique principale d'un transistor FET^1 est le courant de drain qui dépend des deux tensions de commande : $I_D = f(V_{GS}, V_{DS})$. C'est une fonction de deux variables qui peut donc être représentée par deux réseaux :

¹Field Effect Transistor

Table des matières Concepts Notions Bibliographie

section ▲ suivant ►

- Région III : zone d'avalanche

FIG. II.2.3 - Caractéristiques statiques du FET

La région intéressante pour l'amplification de puissance est la zone de saturation. Elle est délimitée par :

- une droite verticale à $V_{DS} = V_{DSMIN}$ (V_{DSMIN} : tension de coude ou de déchet)
- une droite verticale à $V_{DS} = V_{DSMAX}$ (V_{DSMAX} : tension d'avalanche)
- la caractéristique à $V_{GS} = V_{\Phi}$

Les caractéristiques statiques du FET

Table des matières Concepts Notions Bibliographie

II.2.2 Le schéma électrique grand signal du FET

Cours : Schéma petit signal du FET

Le *schéma électrique non-linéaire* haute fréquence complet du transitor FET est donné figure II.2.4.

Un tel schéma ne peut être analysé que sur un ordinateur à l'aide de logiciels de CAO². Pour effectuer une étude analytique, il est nécessaire de simplifier ce schéma ainsi que les équations des non-linéarités. Les études analytiques ne reflètent donc qu'un fonctionnement au premier ordre du transistor. Elles présentent néammoins l'avantage de comprendre les mécanismes électroniques internes du circuit et l'influence des différents éléments intrinsèques sur les performances finales.

Table des matières Concepts Notions Bibliographie

Exercices

²Conception Assistée par Ordinateur

II.2.3 Le schéma électrique petit signal du FET

Cours : Schéma grand signal du FET

Le *schéma électrique petit signal* se déduit du schéma non-linéaire en linéarisant toutes les nonlinéarités autour d'un point de polarisation.

Exemple de la source de courant de drain

En régime *non-linéaire*, on utilise une équation du type : $I_D = f(V_{GS}, V_{DS})$ En petit signal, on linéarise cette équation autour d'un point de polarisation M_O : $I_D = g_{m_0} \cdot V_{GS} + g_{d_0} \cdot V_{DS}$

$$g_{m_0} = \frac{\partial I_D}{\partial V_{GS}} \Big|_{M_0} : \text{transconductance}$$
$$g_{d_0} = \frac{\partial I_D}{\partial V_{DS}} \Big|_{M_0} : \text{conductance de drain}$$

A titre d'exemple, considérons l'équation suivante pour le courant de drain :

$$I_D = I_{DSS} \cdot \left(1 - \frac{V_{GS}}{V_P}\right)^2 \tag{II.2.1}$$

 I_{DSS} représente le courant à Vgs=0; V_P représente la tension de pincement (Vp<0).

Concepts Notions Bibliographie

Table des matières

Exercices

précédent

section \blacktriangle

La linéarisation autour d'un point m_0 donne :

$$g_{m_0} = \frac{\partial I_D}{\partial V_{GS}} \Big|_{M_0} = \frac{2I_{DSS}}{V_p^2} (V_{GS0} - V_P)$$
$$g_{d_0} = \frac{\partial I_D}{\partial V_{DS}} \Big|_{M_0} = 0$$

On écrit alors de façon plus simplifiée une *relation linéaire* : $I_D = g_{m_0} V_{GS}$

Cette relation n'est valable que si l'amplitude de V_{GS} (autour de V_{GS0}) reste faible de façon à assimiler la fonction $I_D = f(V_{GS})$ à sa tangente (cf figure II.2.5).

La structure du schéma électrique reste identique à celle du *modèle non-linéaire*. Les nonlinéarités ont été remplacées par des *éléments linéaires*. Ce modèle n'est valable que pour le point de polarisation pour lequel la linéarisation a été faite. Le schéma électrique petit signal du FET

Table des matières Concepts Notions Bibliographie

Exercices

◄ précédent se

section 🔺

Le schéma électrique petit signal du FET

FIG. II.2.5 – Exemple de linéarisation d'une caractéristique non-linéaire

Notions Bibliographie

Exercices

Table des matières Concepts

section 🔺

suivant <

– Un réseau dans le plan (I_D, V_{DS}) paramétré en V_{GS}

– Un réseau dans le plan (I_D, V_{GS}) paramétré en V_{DS}

Par ailleurs, la jonction grille-source est une diode qui, en fonctionnement normal, est polarisée en inverse : $V_{GS} < 0$. La caractéristique (figure II.2.2) $I_G = f(V_{GS})$ est celle d'une diode avec une tension de seuil V_{Φ} .

FIG. II.2.2 - Caractéristique de la diode grille-source d'un FET

Sur les réseaux de caractéristiques statiques (figure II.2.3), on distingue trois zones de fonctionnement :

- Région I : zone ohmique
- Région II : zone de saturation

Les caractéristiques statiques du FET

Table des matières Concepts Notions Bibliographie

Exercices

◄ précédent see

section 🔺

Le schéma électrique petit signal du FET

FIG. II.2.6 - Modèle petit signal du transistor FET en hautes fréquences

Table des matières Concepts Notions Bibliographie

Exercices

II.3 Le transistor bipolaire

II.3.1	Les caractéristiques statiques du BIP	24
II.3.2	Schéma électrique grand signal du BIP	27
II.3.3	Schéma électrique petit signal du BIP	29

Table des matières Concepts Notions Bibliographie

II.3.1 Les caractéristiques statiques du BIP

FIG. II.3.7 – Symbole du transistor bipolaire

Pour un *transistor bipolaire*, les tensions de commande sont : V_{BE} et V_{CE} . Les réponses sont les courants : I_B et I_C

La jonction base-émetteur est une diode qui, en fonctionnement normal, est polarisée en direct. Les relations classiques simplifiées qui régissent le comportement du circuit sont :

$$I_B = I_{BS} \left(e^{\left(\frac{qV_{BE}}{KT}\right)} - 1 \right)$$
(II.3.1)

$$I_C = \beta . I_B \tag{II.3.2}$$

 $I_E = I_C + I_B$ (II.3.3)

Concepts Notions Bibliographie

Exercices

Table des matières

section ▲ suivant ►

La relation II.3.1 correspond au courant de base dû à la jonction base-émetteur. Le gain en courant β permet de calculer le courant de collecteur avec la relation II.3.2. L'équation II.3.3 verifie la loi des noeuds au niveau du transistor.

Sur le réseau de caractéristiques statiques (cf figure II.3.8), on distingue 3 régions dans le plan $I_C = f(V_{CE})$. La région II est celle intéressante pour l'amplification. L'utilisation d'un transistor bipolaire est plus délicate que pour un transistor FET dans le sens où il existe un courant d'entrée I_B non nul qu'il faut contrôler. En particulier, le point de polarisation sera plus facile à contrôler en utilisant une polarisation en courant I_{B0} , la polarisation en tension V_{BE0} étant trop sensible (caractéristique exponentielle de la diode base-émetteur).

Les caractéristiques statiques du BIP

Table des matières Concepts Notions Bibliographie

Exercices

section ▲ suivant ►

FIG. II.3.8 - Caractéristiques statiques du bipolaire

Les caractéristiques statiques du BIP

Table des matières Concepts Notions Bibliographie

Exercices

~

II.3.2 Schéma électrique grand signal du BIP

Cours : Schéma petit signal du bipolaire

Le modèle d'Ebers-Moll Les élements non-linéaires statiques sont les diodes base-émetteur et base-collecteur et la source de courant I_{CT} . Equation de la diode base-émetteur :

$$\frac{I_{CC}}{\beta_F} = I_{SCC} \left(e^{\frac{q V_{BE}}{KT}} - 1 \right)$$
(II.3.4)

Equation de la diode base-collecteur :

$$\frac{I_{EC}}{\beta_R} = I_{SEC} \left(e^{\frac{qV_{BC}}{KT}} - 1 \right)$$
(II.3.5)

En fonctionnement normal, la diode base-émetteur est polarisée en direct alors que la diode basecollecteur est en inverse.

Un tel modèle ne peut être utilisé qu'avec un logiciel de CAO. Une étude analytique n'est envisageable qu'après une simplification de ce schéma.

27

Table des matières Concepts Notions Bibliographie

◄ précédent section ▲ suivant ►

FIG. II.3.9 - Schéma électrique du bipolaire en hautes fréquences

Schéma électrique grand signal du BIP

Table des matières Concepts Notions Bibliographie

II.3.3 Schéma électrique petit signal du BIP

Cours : Schéma grand signal du bipolaire

Ce schéma se déduit du circuit précédent en linéarisant tous les éléments non-linéaires autour d'un point de polarisation. Le *modèle linéaire* figure II.3.10 est appelé modèle en Π .

Les équations principales associées sont :

$$c = g_{mF}.V_{BE} - g_{mR}.V_{BC}$$

 $g_{mF} \text{ est la transconductance linéaire directe (foward) :}$ $g_{mF} = \frac{\partial I_C}{\partial V_{BE}} = \frac{q}{KT} \cdot \beta_F \cdot I_{SCC} \cdot e^{\left(\frac{qV_{BE}}{KT}\right)}$ $g_{mR} \text{ est la transconductance linéaire inverse (reverse) :}$ $g_{mR} = \frac{\partial I_C}{\partial V_{BC}} = \frac{q}{KT} \cdot \beta_R \cdot I_{SEC} \cdot e^{\left(\frac{qV_{BC}}{KT}\right)}$ $La résistance r_{BE} se détermine en calculant :$ $<math>\frac{1}{r_{BE}} = \frac{\partial \left(\frac{I_{CC}}{\beta_F}\right)}{\partial V_{BE}} = \frac{g_{mF}}{\beta_F}$ $Soit : r_{BE} = \frac{\beta_F}{g_{mF}}$ $De même, la résistance r_{BC} s'exprime par :$ $<math>\frac{1}{r_{BC}} = \frac{\partial \left(\frac{I_{EC}}{\beta_R}\right)}{\partial V_{BC}} = \frac{g_{mR}}{\beta_R}$

Table des matières Concepts Notions Bibliographie

(II.3.6)

◄ précédent

FIG. II.3.10 – Modèle petit signal du transistor bipolaire en hautes fréquences

Soit : $r_{BC} = \frac{\beta_R}{g_{mR}}$

44

Les capacités C_{BE} et C_{BC} s'expriment par la somme des capacités de jonction et de diffusion autour du point de polarisation : $C_{BE} = C_{DE} \left(V_{BEo} \right) + C_{JE} \left(V_{BEo} \right)$

 $C_{BC} = C_{DC} \left(V_{BCo} \right) + C_{IC} \left(V_{BCo} \right)$

Schéma électrique petit signal du BIP

Table des matières Concepts Notions Bibliographie

Exercices

Chapitre III LES AMPLIFICATEURS DE PUISSANCE

111.1	Caractéristiques des amplificateurs	32
111.2	Classes de fonctionnement	48
III.3	Principes d'adaptation d'impédance	75
111.4	Conception des circuits d'adaptation	86
111.5	Conception des circuits de polarisation	95

Table des matières Concepts Notions Bibliographie

III.1 Caractéristiques des amplificateurs

III.1.1	Rappels des unités de gain et de puissance	33
III.1.2	Caractéristiques de puissance	36
III.1.3	Linéarité des amplificateurs	40

Table des matières Concepts Notions Bibliographie

III.1.1 Rappels des unités de gain et de puissance

Considérons une impédance complexe Z quelconque parcourue par un courant i(t) avec à ses bornes une tension v(t):

 $i(t) = \hat{I}.\cos(\omega t - \varphi)$ $v(t) = \hat{V}.\cos(\omega t)$

 φ représente le déphasage de la tension par rapport au courant, c'est également la phase de l'impédance Z :

 $Z = |Z| . e^{j\varphi}$

La puissance moyenne consommée sur une période s'écrit :

 $P = \frac{1}{2} \Re \left\{ V I^* \right\}$

(III.1.1)

Table des matières Concepts Notions Bibliographie

Exercices

Ou encore :

 $P = \frac{1}{2}\hat{V}\hat{I}\cos(\varphi)$

section 🔺

suivant ►

Cette puissance (encore appelée *puissance active*) est entièrement dissipée (Effet Joule) dans les éléments résistifs de l'impédance Z. Cette puissance s'exprime en *Watts* (W). En HF et en hyper-fréquences, on utilise fréquemment le *dBm* : le *décibel* référencé au mW :

 $P_{dBm} = 10.\log\left(\frac{P_W}{1_{mW}}\right) \tag{III.1.2}$

Soit encore :

$P_{dBm} = 10.\log(P_{mW})$

Attention :

Pour calculer la *somme de deux puissances*, on ne peut pas le faire en ajoutant des dBm entre eux. $(P_{dBm} = 10.\log(P_1 + P_2) \neq P_{1dBm} + P_{2dBm})$ Seules les puissances exprimées en Watts s'ajoutent entre elles.

Pour un quadripôle (2 accès), on définit une *puissance d'entrée* P_E et une *puissance de sortie* P_S . Le *gain en puissance* G_P de ce quadripôle est le rapport entre la puissance de sortie et la puissance d'entrée :

 $G_P = \frac{P_S}{P_E}$ (puissances exprimées en W ou en mW)

On l'exprime toujours en decibels (dB) :

 $G_{PdB} = 10.\log(G_P) = 10.\log\left(\frac{P_S}{P_E}\right) = P_{SdBm} - P_{EdBm}$ L'intérêt des *décibels* est de "transformer" des produits ou rapports en sommes et soustractions. On écrira par exemple pour un quadripôle :

 $P_{SdBm} = P_{EdBm} + G_{PdB}$

Rappels des unités de gain et de puissance

Table des matières Concepts Notions Bibliographie

section 🔺

suivant 🕨

A retenir :

→ Multiplier par 2 équivaut en dB à ajouter 3dB → Multiplier par 10 équivaut en dB à ajouter 10dB Exemples :

 $\begin{array}{l} 0.1 \ \text{mW} \Leftrightarrow -10 \ \text{dBm} \ ; 1 \ \text{mW} \Leftrightarrow 0 \ \text{dBm} \\ 2 \ \text{mW} \Leftrightarrow 3 \ \text{dBm} \ ; 10 \ \text{mW} \Leftrightarrow 10 \ \text{dBm} \\ 100 \ \text{mW} \Leftrightarrow 20 \ \text{dBm} \end{array}$

Rappels des unités de gain et de puissance

Table des matières Concepts Notions Bibliographie

III.1.2 Caractéristiques de puissance

Cours : Unités de gain et de puissance Linéarité d'un amplificateur

Considérons un amplificateur adapté 50Ω en entrée et en sortie.

FIG. III.1.1 - Amplificateur

L'adaptation signifie que l'impédance d'entrée de l'amplificateur est égale à 50Ω ainsi que son impédance de sortie. Le mot amplificateur désigne le transistor (ou les transistors) avec leurs circuits de polarisation et d'adaptation.

Table des matières Concepts Notions Bibliographie
Dans les documentations techniques, les constructeurs indiquent généralement les performances de l'amplificateur à *1 dB de compression* de *gain*. Ceci correspond à une puissance d'entrée telle que :

 $G_{P_{1dB}} = G_{P_{MAX}} - 1dB.$

Le gain maximum $G_{P_{MAX}}$ est obtenu en *fonctionnement linéaire* de l'amplificateur, c.a.d pour de faibles puissances d'entrée.

Définitions des puissances et rendements

- *P_E : Puissance d'entrée* RF (W ou dBm)
- P_S : Puissance de sortie RF (W ou dBm)
- $P_{AJ} = P_S P_E$: Puissance ajoutée RF (W ou dBm)
- P_{AL} = : Puissance d'alimentation DC (W)
- $P_{DISS} = \sum P_{Entrantes} \sum P_{Sortantes}$: Puissance dissipée (Effet Joule) (W)
- $-\eta_S = P_S/P_{AL}$: Rendement de sortie (%)
- $-\eta_{AJ} = P_{AJ}/P_{AL}$: Rendement en puissance ajoutée (%)

La *caractéristique de puissance* $P_S = f(P_E)$ peut être tracée en utilisant le Watt comme unité. Le plus souvent, les puissances sont exprimées en dBm comme indiqué figure III.1.2. Avec cette Caractéristiques de puissance

Table des matières Concepts Notions Bibliographie

Exercices

◄ précédent section ▲ suivant ►

FIG. III.1.2 - Puissance de sortie en fonction de la puissance d'entrée

représentation, la pente de la courbe en *zone linéaire* est toujours de 1dB par dB quelque soit l'amplificateur. A l'abscisse $P_E = 0dBm$, la valeur de P_S est égale au gain maximum $G_{P_{MAX}}$. On distingue trois zones : la zone linéaire, la *zone de compression* et la zone de saturation. Pour l'amplification de puissance, c'est dans la zone de compression que l'on obtient en général les meilleures performances de l'amplificateur en termes de puissance de sortie et de *rendement*. Caractéristiques de puissance

Table des matières Concepts Notions Bibliographie

Exercices

◄ précédent section ▲ suivant ►

Caractéristiques de puissance

FIG. III.1.3 – Gain en puissance en fonction de la puissance d'entrée

Table des matières Concepts Notions Bibliographie

section \blacktriangle

III.1.3 Linéarité des amplificateurs

Cours : Caractéristiques de puissance

Taux d'harmoniques

Considérons un amplificateur à l'entrée duquel on applique un signal sinusoïdal à la fréquence fondamentale f_0 .(Cas monoporteuse)

Cas n°1 : régime linéaire La puissance d'entrée est faible, l'amplificateur fonctionne en régime petit signal et son gain est donc maximum. La figure III.1.4 représente les *spectres de puissance* à l'entrée et à la sortie de l'amplificateur. Le circuit, dans ce cas, ne génère pas de fréquences harmoniques de la fréquence fondamentale f_0 .

Cas n°2 : régime non-linéaire La puissance d'entrée est plus élevée et se situe par exemple dans la *zone de compression*. L'amplificateur fonctionne donc en régime *non-linéaire* et génère des fréquences harmoniques $n.f_0$ de la fréquence fondamentale f_0 . Le spectre associé à la puissance de sortie est indiqué sur la figure III.1.5.

Pour quantifier le niveau de puissance de ces raies aux harmoniques, on définit le *Taux d'harmonique d'ordre N* comme étant le rapport entre la puissance de sortie à l'harmoniques de rang Table des matières Concepts Notions Bibliographie

Exercices

FIG. III.1.4 – Spectres entrée/sortie en régime linéaire

N et la puissance de sortie au fondamental.

$$T_N(dB) = 10.\log\left(\frac{P_{S_{N,fo}}}{P_{S_{fo}}}\right) = P_{SdBm}(N.fo) - P_{SdBm}(fo)$$
(III.1.3)

Intermodulation d'ordre trois

44

L'*intermodulation* est un phénomène dû à la non-linéarité de l'amplificateur et qui apparaît lorsque l'on applique à l'entrée deux signaux de fréquences voisines f_1 et f_2 . (Cas biporteuse)

Cas n°1 : régime linéaire Dans ce cas, les puissances d'entrée aux fréquences f_1 et f_2 sont faibles, l'amplificateur fonctionne *linéairement*.

Il n'y a pas de génération de raies supplémentaires en sortie.

Linéarité des amplificateurs

Table des matières Concepts Notions Bibliographie

Exercices

FIG. III.1.5 – Spectres entrée/sortie en régime non-linéaire

Cas n°2 : régime non-linéaire La puissance d'entrée totale est telle que l'amplificateur fonctionne en *zone de compression*. La *non-linéarité* génére dans ce cas une multitude de raies indésirables en sortie.

Les fréquences de ces raies sont des combinaisons linéaires des deux fréquences d'entrée f_1 et f_2 et sont données par la relation suivante :

$$\pm m.f_1 \pm n.f_2(metnentiers)$$

On appelle Ordre d'intermodulation la quantité : |m| + |n|.

Les raies générées en BF $(f_2 - f_1)$ et les spectres harmoniques peuvent être éliminés par filtrage de type passe-bande en sortie de l'amplificateur. En revanche les raies d'intermodulation proches des fréquences porteuses f_1 et f_2 ne peuvent être éliminées facilement par filtrage (cf figure III.1.8. Les raies d'ordre élevé (5,7,...) ont souvent des puissances faibles. Les raies les plus gênantes sont les raies d'ordre trois $(2.f_1 - f_2$ et $2.f_2 - f_1)$ qui sont les plus proches des fréquences fondamentales

Linéarité des amplificateurs

Table des matières Concepts Notions Bibliographie

Exercices

(III.1.4)

FIG. III.1.6 – Spectres entrée/sortie en régime linéaire

et dont les puissances peuvent être importantes.

Pour quantifier l'*IM3*¹, on définit le *Rapport d'Intermodulation C/I* (Carrier/Intermodulation) par la relation suivante :

$$\frac{C}{I_{dBc}} = 10.\log\left(\frac{P_S}{P_{S3}}\right) = P_{S_{dBm}} - P_{S3_{dBm}}$$
(III.1.5)

Ce rapport C/I dépend la puissance d'entrée, lorsqu'elle augmente, le rapport C/I diminue. La figure III.1.9 représente une courbe typique de l'évolution du rapport C/I en fonction de la puissance d'entrée. Plus la valeur du C/I est importante, plus l'amplificateur est linéaire.

Lorsque l'on donne une valeur de C/I, il faut donc obligatoirement lui associer une valeur de puissance d'entrée (ou de sortie). Il existe un deuxième paramètre permettant d'évaluer les per-

Table des matières Concepts Notions Bibliographie

Linéarité des amplificateurs

¹Intermodulation d'Ordre Trois

FIG. III.1.7 - Spectres entrée/sortie en régime non-linéaire

formances en linéarité : c'est le Point d'Interception.

Graphiquement, on trace la courbe $P_S = f(P_E)$ en dBm correspondant à l'une des deux fréquences fondamentales (f_1 ou f_2) dans le cas d'une excitation biporteuse de mêmes amplitudes. (cf figure III.1.10). Cette caractéristique se confond dans sa partie linéaire avec une droite de pente unité et s'infléchit dans les *zones de compression* puis de saturation.

On trace également, sur le même graphique, la courbe correspondant à la puissance P_{S3} de l'une des deux raies d'ordre trois. Dans la zone linéaire, cette courbe se confond avec une droite de pente trois tant que l'effet de la non-linéarité reste faible. En prolongeant les zones linéaires des deux courbes par des droites vers le haut du graphique, leur point d'intersection est le *Point d'Interception*. La puissance de sortie correspondante est la *Puissance d'Interception* P_I . L'intérêt du point d'interception est que sa puissance P_I est indépendante de la puissance d'entrée. Plus la puissance P_I est importante, meilleure est la linéarité de l'amplificateur.

Il existe une relation entre la puissance P_I et le rapport C/I:

Table des matières Concepts Notions Bibliographie

Linéarité des

amplificateurs

Exercices

FIG. III.1.8 – Spectres d'intermodulation autour des fréquences porteuses

$$\frac{C}{I}_{dBc} = 2.\left[P_I(dBm) - P_S(dBm)\right]$$

Cette relation n'est valable que lorsque l'amplificateur fonctionne en régime faiblement nonlinéaire (c.a.d jusqu'à sa zone de compression) et pour deux porteuses de mêmes amplitudes à l'entrée. Linéarité des amplificateurs

Table des matières Concepts Notions Bibliographie

(III.1.6)

Linéarité des amplificateurs

FIG. III.1.9 – Evolution du C/I en fonction de la puissance d'entrée

Table des matières Concepts Notions Bibliographie

Linéarité des amplificateurs

Table des matières Concepts Notions Bibliographie

III.2 Classes de fonctionnement

III.2.1	Définitions des classes de fonctionnement	49
III.2.2	Etude simplifiée d'un amplificateur à FET	55
III.2.3	Comparaison des classes de fonctionnement	68

Table des matières Concepts Notions Bibliographie

III.2.1 Définitions des classes de fonctionnement

Un amplificateur de puissance est un dispositif électronique *non-linéaire*. Il génére donc des fréquences harmoniques des courants et tensions à ses accès. *Non-linéarité \u2264 Génération de fréquences harmoniques*

Considérons un transistor représenté par un quadripôle (figure III.2.11)

FIG. III.2.11 – Le transistor en tant que quadripôle

Les tensions u(t) et v(t) sont les *tensions de commande* (ou excitations) que l'on impose au dispositif. La tension d'entrée u(t) est imposée par le générateur, la tension de sortie v(t) est imposée par l'impédance de charge.

Les courants $i_1(t)$ et $i_2(t)$ sont les *réponses* du dispositif aux excitations u(t) et v(t).

Table des matières Concepts Notions Bibliographie

section 🔺 suivant 🕨

De façon très générale, on peut écrire pour ce quadripôle deux relations temporelles du type :

$$i_1(t) = G_{NL}(u(t), v(t))$$
 (III.2.1)

$$i_2(t) = F_{NL}(u(t), v(t))$$
 (III.2.2)

Les fonctions G_{NL} et F_{NL} sont des fonctions *non-linéaires*. En général, on s'intéresse prioritairement à $i_2(t)$ qui est la non-linéarité fondamentale et qui traduit l'amplification du système.

On définit les *classes de fonctionnement* uniquement par rapport aux *formes temporelles* des tensions de commande u(t) et v(t) aux accès du dispositif. Ces signaux périodiques peuvent être de formes quelconques, carrées ou purement sinusoïdales.

Les classes de fonctionnement les plus utilisées pour l'*amplification de puissance* en hyperfréquence sont les *classes sinusoïdales* pour lesquelles les commandes u(t) et v(t) sont purement sinusoïdales. Cette famille regroupe les classes A, AB, B et C. Ces classes se différencient entre elles par le temps d'existence du courant de sortie $i_2(t)$.

- CLASSE A : $i_2(t)$ est sinusoïdal et existe sur toute la période T du signal de commande u(t).
- CLASSE AB : $i_2(t)$ est nul sur moins d'une demi-période du signal de commande u(t).
- CLASSE B : $i_2(t)$ est nul sur exactement une demi-période du signal de commande u(t).
- CLASSE C : $i_2(t)$ est nul sur plus d'une demi-période du signal de commande u(t).

Pour traduire l'existence de $i_2(t)$ sur une période, on définit l'*angle d'ouverture* σ . L'angle σ correspond à la durée t_0 pendant laquelle $i_2(t)$ est non nul sur 1/2 période. La référence t = 0 est prise pour la valeur maximale de $i_2(t)$.

Le tableau III.2.14 récapitule les valeurs de l'angle d'ouverture en fonction de la classe de fonctionnement. Le choix de la *classe de fonctionnement* se fait par rapport à des critères de puissance, Définitions des classes de fonctionnement

Table des matières Concepts Notions Bibliographie

Exercices

section 🔺

suivant 🕨

de gain, de rendement et de linéarité.

Définitions des classes de fonctionnement

Table des matières Concepts Notions Bibliographie

section ▲ suivant ►

Définitions des classes de fonctionnement

Exercices

FIG. III.2.12 – Formes temporelles de $i_2(t)$ pour les classes sinusoïdales

section ▲ suivant ►

Définitions des classes de fonctionnement

FIG. III.2.13 – Angle d'ouverture σ

Table des matières Concepts Notions Bibliographie

Exercices

section ▲ suivant ►

Définitions des classes de fonctionnement

Classe	Condition sur i(t)	Valeur de σ	
А	non nul sur T	180°	
AB	nul sur moins de T/2	90°< σ <180°	
В	nul pendant T/2	90°	
С	nul sur plus de T/2	$\sigma < 90^{\circ}$	

FIG. III.2.14 – Tableau récapitulatif des classes sinusoïdales

Table des matières Concepts Notions Bibliographie

III.2.2 Etude simplifiée d'un amplificateur à FET

Présentation du problème Un circuit classique d'amplificateur fonctionnant dans une *classe* sinusoïdale est le suivant :

FIG. III.2.15 – Schéma d'un amplificateur à FET

Cette topologie électrique est une topologie minimale pour un fonctionnement correct de l'amplificateur. Elle pourra toujours être améliorée en ajoutant notamment un circuit d'adapta-

Table des matières Concepts Notions Bibliographie

tion d'entrée et de sortie.

Rôle des différents éléments

Circuits de polarisation Le circuit de polarisation est constitué de :

- L_C : selfs de choc. Leur valeur est élevée de façon à ce que leur impédance à la fréquence de travail soit la plus grande possible. De façon idéale, cette self est un court-circuit pour le continu et un circuit ouvert pour la RF. Leur rôle est d'isoler les alimentations de la partie RF du circuit.
- C_D : capacités de liaison. Leur valeur est élevée de façon à ce que leur impédance à la fréquence de travail soit la plus faible possible. De façon idéale, cette capacité est un circuit ouvert pour le continu et un court circuit pour la RF. Leur rôle est d'isoler le générateur et le circuit de charge des alimentations continues.

Circuit de charge Le circuit de charge est constitué de :

- − R_L : résistance de charge. C'est à cette résistance que sera fournie toute la puissance RF délivrée par l'amplificateur. C'est la résistance que doit 'voir' le transistor pour obtenir les performances souhaitées de l'amplificateur. Pour une conception complète, il est nécessaire de concevoir un circuit d'adaptation de sortie qui réalise entre autre la transformation $50\Omega \Leftrightarrow R$.
- L et C : Le circuit de charge est un circuit RLC parallèle dont la fréquence de résonance $f_0 = \frac{1}{2\pi\sqrt{LC}}$ est ajustée à la valeur de la fréquence de travail. Ce circuit se comporte comme

Etude simplifiée d'un amplificateur à FET

Table des matières Concepts Notions Bibliographie

un filtre sélectif vis à vis de la tension de sortie $V_{DS}(t)$. L'impédance de charge $Z_L(\omega)$ présentée par le circuit de charge est donc :

- $Z_L(\omega_0) = R_L$ à la fréquence fondamentale f_0
- $Z_L(n.\omega_0) = 0$ aux fréquences harmoniques $n.f_0$

Les composantes harmoniques de la tension $V_{DS}(t)$ sont donc nulles, la tension de sortie est donc toujours purement sinusoïdale y compris pour un fonctionnement *non-linéaire* du transistor. Ce circuit RLC parallèle permet de se placer dans le cadre de la définition des *classes sinusoïdales* en imposant la forme sinusoïdale de la tension de sortie. Le courant de sortie peut en revanche comporter des composantes harmoniques, il est périodique mais pas sinusoïdal.

Schéma électrique pour l'analyse Pour l'analyse théorique en continu et à la fréquence f_0 , on peut simplifier le circuit électrique III.2.16 en considérant les signaux au niveau du transistor.

FIG. III.2.16 – Schéma réduit pour l'analyse en DC et à la fréquence f_0

Etude simplifiée d'un amplificateur à FET

Table des matières Concepts Notions Bibliographie

Exercices

◄ précédent section ▲ suivant ►

En considérant le schéma figure III.2.16, les tensions et courants s'écrivent² :

$$V_{GS}(t) = V_{GS0} + V_{GS1} \cdot \cos(\omega t)$$
(III.2.3)

$$V_{DS}(t) = V_{DS0} + V_{DS1} \cdot \cos(\omega t + \psi_1)$$
 (III.2.4)

$$I_{DS}(t) = I_{DS0} + I_{DS1} \cdot \cos(\omega t + \varphi_1) + I_{DS2} \cdot \cos(2\omega t + \varphi_2) + \dots$$
(III.2.5)

- V_{GS0} et V_{DS0} : Tensions continues (alimentation)
- V_{GS1} et V_{DS1} : Amplitudes crêtes des composantes à f_0
- *I*_{DS0} : Courant continu de drain (alimentation)
- I_{DS1} : Amplitude crête du courant à f_0

Les tensions $V_{GS}(t)$ et $V_{DS}(t)$ sont imposées respectivement par le générateur et l'impédance de charge mais également par les caractéristiques statiques du transistor. Il n'est bien sûr pas possible d'effectuer des calculs analytiques en utilisant le modèle complet du transistor. Il est cependant possible de déduire certaines conclusions et tendances sur les performances de l'amplificateur en considérant un *schéma simplifié du FET* (figure III.2.17). Le schéma intrinsèque du transistor FET est réduit à sa plus simple expression : une source de courant non-linéaire et une admittance d'entrée.

On obtient donc un schéma extrêmement simplifié de l'amplificateur mais qui représente néanmoins le fonctionnement fondamental du circuit.

Etude simplifiée d'un amplificateur à FET

Table des matières Concepts Notions Bibliographie

Exercices

²Par convention, l'indice '0' est réservé aux composantes continues, l'indice '1' aux composantes fondamentales, l'indice 'n' à l'harmonique de rang n.

FIG. III.2.17 - Modèle equivalent du FET

Source de courant La source de courant est représentée par une *fonction non-linéaire* du type $I_{DS} = f(V_{GS}, V_{DS})$. La fonction la plus célèbre et la plus couramment utilisée est la fonction quadratique (équation III.2.6) ne dépendant que de la commande V_{GS} . Cette fonction ne dépend pas de la tension V_{DS} , ceci est équivalent à considérer une conductance de drain nulle et un fonction nement du transistor limité à sa zone de saturation.

$$I_{DS} = I_{DSS} \cdot \left(1 - \frac{V_{GS}}{V_P}\right)^2 \tag{III.2.6}$$

avec:

- I_{DSS} : courant de drain à $V_{GS} = 0$
- V_P : tension de pincement ($I_{DS} = 0$)

Admittance d'entrée L'expression de l'admittance d'entrée G_{IN} est issue d'un calcul approché qui fait intervenir la capacité d'entrée C_{GS} et la résistance équivalente d'entrée R_{IN} .

$$G_{IN} \approx R_{IN}.C_{GS}^2.\omega^2 \tag{III.2.7}$$

Etude simplifiée d'un amplificateur à FET

Table des matières Concepts Notions Bibliographie

Exercices

59

~

◄ précédent section ▲ suivant ►

FIG. III.2.18 – Schéma réduit de l'amplificateur pour l'analyse en DC et à f_0

Il est à noter que cette admittance est proportionnelle au carré de la fréquence, l'impédance d'entrée du transistor est donc divisée par 4 chaque fois que la fréquence de travail est doublée.

Etude comparative des classes sinusoïdales

L'étude des *classes de fonctionnement* sinusoïdales A, AB, B et C est liée à la notion d'*angle d'ouverture* déjà présentée. L'étude analytique repose dans un premier temps sur une analyse graphique du fonctionnement du transistor.

Analyse graphique et analytique Tout se passe au niveau de la source de courant de drain I_{DS} . C'est donc autour de sa caractéristique que se fait l'analyse graphique.

La figure III.2.19 représente la construction graphique dans un cas général d'excitation grand signal sinusoïdale et pour une amplitude quelconque de la tension de commande $V_{GS}(t)$. Cette

Etude simplifiée d'un amplificateur à FET

Table des matières Concepts Notions Bibliographie

Exercices

~

construction graphique montre que le courant $I_{DS}(t)$ n'est pas sinusoïdal qu'il est contitué de continu, de fondamental f_0 et d'harmoniques $n.f_0$.

Par ailleurs, cette construction permet de préciser les déphasages ψ_1 et φ_1 respectivement de $V_{DS1}(t)$ et $I_{DS1}(t)$. La composante $I_{DS1}(t)$ au fondamental de $I_{DS}(t)$ est en phase avec la tension $V_{GS1}(t)$, donc $\varphi_1 = 0$.

La relation entre le courant $I_{DS1}(t)$ et de la tension $V_{DS1}(t)$ s'écrit :

$$V_{DS1}(t) = -R_L I_{DS1}(t)$$
(III.2.8)

 $I_{DS1}(t)$ est donc en opposition de phase avec $V_{DS1}(t)$. $V_{DS1}(t)$ est donc en opposition de phase avec $V_{GS1}(t)$, on a donc $\psi_1 = \pi$.

Les nouvelles expressions des signaux sont :

$$V_{GS}(t) = V_{GS0} + V_{GS1} \cos(\omega t)$$
(III.2.9)

$$V_{DS}(t) = V_{DS0} - V_{DS1} \cos(\omega t)$$
 (III.2.10)

$$I_{DS}(t) = I_{DS0} + I_{DS1} \cdot \cos(\omega t) + I_{DS2} \cdot \cos(2\omega t + \varphi_2) + \dots$$
(III.2.11)

Dans ce problème, les inconnues à déterminer pour accéder aux performances en DC et RF de l'amplificateur sont les courants I_{DS0} et I_{DS1} .

- V_{GS0} et V_{DS0} : imposées par l'alimentation DC (choix du point de polarisation)
- $-V_{GS1}$: imposée par le générateur RF
- V_{DS1} : imposée par la résistance R_L

44

Les composantes harmoniques du courant peuvent être calculées mais ne sont pas nécessaires pour évaluer les performances au fondamental.

Le calcul analytique se décompose en trois étapes :

Etude simplifiée d'un amplificateur à FET

Table des matières Concepts Notions Bibliographie

Exercices

◄ précédent section ▲ suivant ►

- **1** Détermination de l'expression temporelle de $I_{DS}(t)$
- **2** Calcul de I_{DS0} et I_{DS1} par décomposition en série de Fourier de $I_{DS}(t)$
- 3 Calcul des performances de l'amplificateur (puissances, gain ...etc)

Expression du courant de drain Sur la construction graphique (figure III.2.19), apparaît le temps t_0 associé à l'*angle d'ouverture* $\sigma = \omega t_0$. On peut écrire :

$$V_{GS}(t_0) = V_P = V_{GS0} + V_{GS1} \cdot \cos(\omega t_0)$$
(III.2.12)

Soit:

$$\cos\left(\sigma\right) = \frac{V_P - V_{GS0}}{V_{GS1}} \tag{III.2.13}$$

On montre que l'expression de $I_{DS}(t)$ est une équation par morceaux :

$$I_{DS}(t) = I_{MAX} \cdot \frac{(\cos(\sigma) - \cos(\omega t))^2}{(\cos(\sigma) - 1)^2} pendant la conduction$$
(III.2.14)
$$I_{DS}(t) = 0 hors conduction$$
(III.2.15)

Calcul de *I*_{DS0} **et** *I*_{DS1} On utilise les formules des décompositions en séries de Fourier.

$$I_{DS0} = \frac{1}{T} \int_0^T I_{DS}(t) dt = \frac{1}{\pi} \int_0^\sigma I_{DS}(\omega t) d\omega t$$
(III.2.16)

$$I_{DS1} = \frac{2}{T} \int_0^T I_{DS}(t) \cos(\omega t) \, dt = \frac{2}{\pi} \int_0^\sigma I_{DS}(\omega t) \cos(\omega t) \, d\omega t \tag{III.2.17}$$

Etude simplifiée d'un amplificateur à FET

Table des matières Concepts Notions Bibliographie

Exercices

~

suivant 🕨

Le calcul de ces intégrales donne :

$$I_{DS0} = \frac{I_{MAX}}{\pi \left(\cos(\sigma) - 1\right)^2} \left[\sigma + \frac{\sigma}{2}\cos(2\sigma) - \frac{3}{4}\sin(2\sigma)\right]$$
(III.2.18)

$$I_{DS1} = \frac{2I_{MAX}}{\pi \left(\cos(\sigma) - 1\right)^2} \left[\frac{3}{4}\sin(\sigma) - \sigma\cos(\sigma) - \frac{1}{12}\sin(3\sigma)\right]$$
(III.2.19)

Remarque :

Ces expressions sont valables pour la fonction quadratique, si l'on choisit une autre fonction, les expressions de I_{DS0} et I_{DS1} seront différentes.

Pour comparer les classes A, AB, B et C entre elles, on se place dans le cas d'excursions maximales des tensions $V_{GS}(t)$ et $V_{DS}(t)$. On prend donc les valeurs maximales possibles pour les amplitudes crêtes V_{GS1} et V_{DS1} , ces valeurs maximales dépendent des caractéristiques statiques du transistor et des tensions de polarisation choisies.

Pour la tension d'entrée, le maximum admissible correspond à $V_{GS1} = -V_{GS0}$ si l'on impose $V_{GS}(t) \le 0$. Le courant I_{MAX} est alors égal à I_{DSS} . Pour la tension $V_{DS}(t)$, on choisit les valeurs de V_{DS0} et V_{DS1} en fonction du réseau statique de sortie du transistor.

La zone de saturation étant délimitée par les valeurs V_{DSMIN} et V_{DSMAX} , la solution pour obtenir une tension crête V_{DS1} maximale est de choisir la tension de polarisation V_{DS0} au milieu de la zone de saturation.

En résumé, dans le cas d'excursions maximales, les tensions et courants en continu et au fondamental sont : Etude simplifiée d'un amplificateur à FET

Table des matières Concepts Notions Bibliographie

Exercices

◄ précédent section ▲ suivant ►

Etude simplifiée d'un amplificateur à FET

$V_{GS0} = -V_{GS1} = -\frac{V_P}{1 - \cos(\sigma)}$

$$V_{DS0} = \frac{V_{DSMAX} + V_{DSMIN}}{2}$$
(III.2.21)

$$V_{DS1} = \frac{V_{DSMAX} - V_{DSMIN}}{2} \tag{III.2.22}$$

$$I_{DS0} = \frac{I_{DSS}}{\pi \left(\cos(\sigma) - 1\right)^2} \left[\sigma + \frac{\sigma}{2}\cos(2\sigma) - \frac{3}{4}\sin(2\sigma)\right]$$
(III.2.23)

$$I_{DS1} = \frac{2I_{DSS}}{\pi \left(\cos(\sigma) - 1\right)^2} \left[\frac{3}{4}\sin(\sigma) - \sigma\cos(\sigma) - \frac{1}{12}\sin(3\sigma)\right]$$
(III.2.24)

Le réglage de l'*angle d'ouverture* σ se fait en réglant la tension de polarisation de grille V_{GS0} . Toutes les composantes des tensions et des courants étant maintenant déterminées, on peut calculer les performances de l'*amplificateur*.

Performances de l'amplificateur

Puissance d'entrée

 $P_E = \frac{1}{2} V_{GS1}^2 G_{IN}$

Soit:

44

$$P_E = \frac{1}{2} \frac{V_P}{1 - \cos(\sigma)}^2 G_{IN}$$

(III.2.25)

(III.2.20)

(III.2.26)

Table des matières Concepts Notions Bibliographie

Puissance de sortie

$$P_S = -\frac{1}{2} V_{DS1} I_{DS1} \cos(\pi)$$

Soit :

$$P_{S} = \frac{1}{4} \left(V_{DSMAX} - V_{DSMIN} \right) \frac{2I_{DSS}}{\pi \left(\cos(\sigma) - 1 \right)^{2}} \left[\frac{3}{4} \sin(\sigma) - \sigma \cos(\sigma) - \frac{1}{12} \sin(3\sigma) \right]$$
(III.2.28)

Puissance ajoutée

$$P_{AJ} = P_S - P_E \tag{III.2.29}$$

Gain en puissance

$$G_P = \frac{P_S}{P_E} \tag{III.2.30}$$

Puissance d'alimentation

$$P_{AL} = V_{DS0} I_{DS0}$$

Soit :

$$P_{AL} = \frac{(V_{DSMAX} + V_{DSMIN})}{2} \frac{I_{DSS}}{\pi \left(\cos(\sigma) - 1\right)^2} \left[\sigma + \frac{\sigma}{2}\cos(2\sigma) - \frac{3}{4}\sin(2\sigma)\right]$$
(III.2.32)

Rendement de sortie

$$\eta_S = \frac{P_S}{P_{AL}}$$

Soit :

44

$$\eta_S = \frac{(V_{DSMAX} - V_{DSMIN})}{(V_{DSMAX} + V_{DSMIN})} \frac{\left[\frac{3}{4}\sin(\sigma) - \sigma\cos(\sigma) - \frac{1}{12}\sin(3\sigma)\right]}{\left[\sigma + \frac{\sigma}{2}\cos(2\sigma) - \frac{3}{4}\sin(2\sigma)\right]}$$

Etude simplifiée d'un amplificateur à FET

Table des matières Concepts Notions Bibliographie

Exercices

(III.2.27)

(III.2.31)

(III.2.33)

(III.2.34)

	◄ précédent section ▲	suivant ►	
<i>Rendement en puis</i> Soit encore :	sance ajoutée $\eta_{AJ} = \frac{P_{AJ}}{P_{AL}}$	(III.2.35)	Etude simplifiée d'un amplificateur à FET
Résistance de charge	$\eta_{AJ} = \eta_S \left(1 - \frac{1}{G_P} \right)$	(III.2.36)	
Soit encore :	$R_L = \frac{V_{DS1}}{I_{DS1}}$	(III.2.37)	
F	$R_L = \frac{(V_{DSMAX} - V_{DSMIN})}{\frac{I_{DSS}}{\pi(\cos(\sigma) - 1)^2} \left[\frac{3}{4}\sin(\sigma) - \sigma\cos(\sigma) - \frac{1}{12}\sin(\sigma)\right]}$	(III.2.38)	

Tous les paramètres de l'*amplificateur* sont exprimés en fonction des caractéristiques propres au transistor (V_{dsmin} , V_{dsmax} , V_P et I_{DSS}) et de la valeur de l'*angle d'ouverture* σ .

> Table des matières Concepts Notions Bibliographie

> > Exercices

44

FIG. III.2.19 – Construction graphique de la forme temporelle de $I_D(t)$

III.2.3 Comparaison des classes de fonctionnement

Les figures suivantes (III.2.20,III.2.21,III.2.22,III.2.23) représentent les formes temporelles des tensions et courants au niveau du transistor pour différentes *classes* de fonctionnement.

Le *cycle de charge*, dessiné sur le réseau de sortie, est une figure de Lissajou entre le courant Id(t) et la tension Vds(t) : on représente sur le réseau statique de sortie les points (Id,Vds) à chaque instant, ceci sur une periode.

Le tableau (figure III.2.24) récapitule l'évolution des performances de l'*amplificateur* en fonction de la *classe* de fonctionnement.

Commentaires :

- Les résultats concernant le *rendement de sortie* η_S sont optimistes et sont en réalité plus faibles. Cependant, l'évolution des paramètres entre les différentes classes donne la bonne tendance.
- Le résultat important est que le courant RF I_{DS1} reste quasiment constant lorsque l'on passe de la classe A à la classe C alors que dans le même temps le courant continu d'alimentation I_{DS0} diminue. La *puissance de sortie* diminue nettement moins que la puissance d'alimentation, le *rendement* augmente lorsque l'on passe de la classe A à la classe C.
- En contre partie, le *gain* diminue puisqu'il faut une *puissance d'entrée* plus importante en classe C qu'en classe A.
- Il est intéressant de noter que la résistance de charge optimale ne change quasi pas en fonction de la classe de fonctionnement. On peut donc faire fonctionner un amplificateur dans

Table des matières Concepts Notions Bibliographie

◄ précédent

section \blacktriangle

l'une des classes sinusoïdale simplement en changeant sa polarisation de grille.

Comparaison des classes de fonctionnement

Table des matières Concepts Notions Bibliographie

Comparaison des classes de fonctionnement

FIG. III.2.20 – Fonctionnement en classe A

Concepts Notions Bibliographie

Table des matières

Exercices

◄ précédent

section

Comparaison des classes de fonctionnement

Table des matières

Concepts Notions

Bibliographie

Exercices

FIG. III.2.21 – Fonctionnement en classe AB

71

Comparaison des classes de fonctionnement

FIG. III.2.22 – Fonctionnement en classe B

Table des matières Concepts Notions Bibliographie

Exercices
◄ précédent

section

Comparaison des classes de fonctionnement

Table des matières

Concepts Notions

Bibliographie

Exercices

FIG. III.2.23 – Fonctionnement en classe C

73

précédent

section \blacktriangle

Classe	А	AB	В	С
σ	180°	120°	90°	60°
Idso	0,375.Idss	0,314.Idss	0,250.Idss	0,173.Idss
Ids1	0,5.Idss	0,48.Idss	0,42.Idss	0,32.Idss
P _e	P_{e_A}	$1,78.P_{e_A}$	$4.P_{e_A}$	$16.P_{e_A}$
P_s	P_{s_A}	$0,96.P_{s_A}$	0,84. <i>P</i> _{<i>s</i>_A}	$0, 64. P_{s_A}$
G_p	G_{p_A}	0 , 54. G_{p_A}	0 ,21. <i>G</i> _{<i>p</i>_A}	$0,04.G_{p_A}$
P _{al}	P_{al_A}	$0,84.P_{al_A}$	$0,67.P_{al_A}$	$0, 46. P_{al_A}$
η_d	${\eta}_{d_A}$	1,14. η_{d_A}	$1,25.\eta_{d_A}$	$1,39.\eta_{d_A}$
$\eta_{d_{MAX}}$	66%	75%	82%	91%
R_L	R_{L_A}	$1,04.R_{L_A}$	$1, 19.R_{L_A}$	$1,56.R_{L_A}$

Comparaison des classes de fonctionnement

Table des matières Concepts Notions Bibliographie

FIG. III.2.24 – Comparaison de performances des différentes classes

chapitre 🔺

III.3 Principes d'adaptation d'impédance

III.3.1	Généralités sur l'adaptation d'impédance	76
III.3.2	Adaptation en gain	79
III.3.3	Adaptation en puissance	82
111.3.4	Différence entre adaptation en gain et en puissance	84

Table des matières Concepts Notions Bibliographie

III.3.1 Généralités sur l'adaptation d'impédance

Cours : Adaptation en gain Adaptation en puissance Adaptations : comparaisons

L'amplificateur peut être représenté symboliquement par une association en cascade de trois quadripôles (figure III.3.25) : le transistor et les deux circuits d'entrée et de sortie.

FIG. III.3.25 - Réseaux d'adaptation

Les réseaux d'entrée et de sortie doivent être conçus pour assurer différentes fonctions :

76

Exercices

Table des matières

Concepts Notions Bibliographie **Assurer l'adaptation d'impédance** Ces réseaux doivent permettre d'obtenir une impédance d'entrée et de sortie égale à 50Ω et présenter au transistor les impédances de charge souhaitées. **Rappel:**

section **A**

Lorsque l'adaptation d'impédance est réalisée, le transfert de puissance du générateur vers la

 Z_G

 Z_L

Charge

FIG. III.3.26 – Adaptation d'impédance : Rappel

Générateur

charge est maximum. La condition d'adaptation d'impédance s'écrit :

 $Z_L = Z_G^*$ (III.3.1)

suivant ►

En considérant les coefficients de réflexion associés :

44

 $\Gamma_L = \Gamma_C^*$ (III.3.2)

Assurer la polarisation Ces réseaux intègrent les *circuits de polarisation* (selfs de choc et capacités de liaison).

Assurer l'opération de filtrage Ces réseaux définissent la bande passante de l'amplificateur ainsi que les impédances présentées au transistor aux fréquences harmoniques.

77

Table des matières Concepts Notions Bibliographie

Exercices

section ▲ suivant ►

Il est important de distinguer deux types d'adaptation RF pour les amplificateurs :

- L'adaptation d'impédance pour obtenir un gain en puissance maximum (adaptation en gain).
 Dans ce cas, l'amplificateur fonctionne en régime linéaire.
- L'adaptation d'impédance pour obtenir une *puissance de sortie* maximale (*adaptation en puissance*). L'amplificateur travaille en régime grand signal autour du point à 1dB de *compression*.

Généralités sur l'adaptation d'impédance

Table des matières Concepts Notions Bibliographie

Exercices

III.3.2 Adaptation en gain

Cours : Adaptation d'impédance Adaptation en puissance Adaptations : comparaisons

On se place ici dans le cas du fonctionnement petit signal de l'amplificateur. Il est donc possible d'utiliser les *paramètres S* pour représenter le fonctionnement du transistor à la fréquence fondamentale, ceci pour un point de polarisation donné.

FIG. III.3.27 - Conditions d'adaptation

79

Table des matières Concepts Notions Bibliographie

Exercices

précédent

suivant 🕨

Notons Γ_g , Γ_l , S'_{11} et S'_{22} les *coefficients de réflexion* vus aux accès du transistor (Figure III.3.28).

Adaptation en gain

section **A**

FIG. III.3.28 - Conditions d'adaptation

Le gain maximum G_{max} est obtenu lorsque le *transfert de puissance* est optimal depuis le générateur jusqu'à la charge. Il est obtenu lorsque l'*adaptation d'impédance* est réalisée entre chaque bloc. En particulier, au niveau du transistor, les conditions suivantes doivent être vérifiées :

$$S_{11}^{'} = \Gamma_g^* \ et \ S_{22}^{'} = \Gamma_l^*$$
 (III.3.3)

 S'_{11} et S'_{22} s'expriment en fonction des paramètres S_{ij} du transistor et des coefficients de réflexion présentés par les circuits d'adaptation Γ_g et Γ_l :

$$S_{11}^{'} = S_{11} + \frac{S_{12}S_{21}\Gamma_l}{(1 - S_{22}\Gamma_l)} = \Gamma_g^*$$

Table des matières Concepts Notions Bibliographie

Exercices

(III.3.4)

précédent

$$S_{22}^{'} = S_{22} + \frac{S_{12}S_{21}\Gamma_g}{\left(1 - S_{11}\Gamma_g\right)} = \Gamma_l^*$$
(III.3.5)

La résolution de ce système d'équations aboutit à deux solutions pour Γ_g et Γ_l . La solution physique est celle pour laquelle $|\Gamma_g| \le 1$ et $|\Gamma_l| \le 1$, ce qui correspond à des impédances passives. Dans ce cas, le gain du montage est maximum et vaut :

81

$$G_{max} = \frac{\left(1 - |\Gamma_l|^2\right) \left(1 - |\Gamma_g|^2\right) |S_{21}|^2}{\left|(1 - S_{22}\Gamma_l) \left(1 - S_{11}\Gamma_g\right) - S_{12}S_{21}\Gamma_l\Gamma_g\right|^2}$$
(III.3.6)

section \blacktriangle

Table des matières Concepts Notions Bibliographie

Adaptation en

gain

Exercices

III.3.3 Adaptation en puissance

Cours : Adaptation d'impédance Adaptation en gain Adaptations : comparaisons

On se place ici dans le cas du *fonctionnement en puissance*, c'est à dire dans la *zone de compression*. Pour ce fonctionnement, les impédances (et notamment l'impédance de charge) à présenter aux accès du transistor sont différentes de celles utilisées lors de l'adaptation en gain. On ne peut plus utiliser le formalisme des paramètres S puisque le composant est en régime *nonlinéaire*.

Les impédances de chage (en entrée et en sortie) à présenter au transistor peuvent être déterminées de deux façons :

- soit par simulation en utilisant un modèle non-linéaire
- soit expérimentalement en utilisant un banc de caractérisation en puissance (mesures Load-Pull)

Quelque soit la mèthode utilisée, l'objectif est de rechercher les impédances de charge permettant d'obtenir le maximum de puissance de sortie (cf études des classes de fonctionnement). Table des matières Concepts Notions Bibliographie

◄ précédent section ▲ suivant ►

FIG. III.3.29 – Adaptation en puissance

Une fois connues les impédances à présenter aux accès du transistor, la structure de l'amplificateur reste identique au cas précédent sauf que les coefficients Γ_g et Γ_l à synthétiser sont différents du cas linéaire.

Table des matières Concepts Notions Bibliographie

Adaptation en

puissance

Exercices

◄ précédent se

section \blacktriangle

III.3.4 Différence entre adaptation en gain et en puissance

Cours : Adaptation d'impédance Adaptation en gain Adaptation en puissance

La différence entre ces deux types d'adaptation apparaît clairement en comparant les caractéristiques de puissance du même transistor adapté soit en gain, soit en puissance, pour la même fréquence et le même point de polarisation.

En régime *linéaire*, l'*amplificateur adapté en gain* présente un gain supérieur. Dans la *zone de compression*, l'*amplificateur adapté en puissance* délivre une puissance de sortie plus importante que celui adapté en gain. Typiquement, on observe un écart d'environ 2dB entre les puissances de sortie prises à 1dB de compression de gain.

Lorsque l'on conçoit un amplificateur de puissance, on réalise toujours une adaptation en puissance.

Table des matières Concepts Notions Bibliographie

◄ précédent se

section 🔺

Différence entre adaptation en gain et en puissance

FIG. III.3.30 – Comparaison Adaptation en puissance/Adaptation en gain

Table des matières Concepts Notions Bibliographie

Exercices

chapitre 🔺

III.4 Conception des circuits d'adaptation

111.4.1	Les circuits d'adaptation	87
111.4.2	Circuits à constantes localisées	89
III.4.3	Circuits à constantes distribuées	91

Table des matières Concepts Notions Bibliographie

III.4.1 Les circuits d'adaptation

Cours :Cours :Circuits d'adaptation : éléments localisésCircuits d'adaptation : éléments distribués

Ce paragraphe présente succintement les principales techniques utilisées pour réaliser les réseaux électriques d'adaptation d'entrée et de sortie de l'amplificateur. On traitera séparément les *circuits d'adaptation* et les *circuits de polarisation*.

FIG. III.4.31 – Circuits à constantes localisées

Ces circuits sont en général constitués d'éléments réactifs (L et C) pour ne pas introduire de *perte de puissance par effet Joule*. Les topologies électriques des circuits d'adaptation sont multiples et dépendent beaucoup de l'amplificateur à réaliser et de la technologie utilisée. Table des matières Concepts Notions Bibliographie

section 🔺

suivant 🕨

Il existe cependant deux technologies distinctes :

- les circuits à constantes localisées (éléments discrets)(figure III.4.31)
- les circuits à constantes distribuées (éléments distribués)

Les circuits d'adaptation

Table des matières Concepts Notions Bibliographie

III.4.2 Circuits à constantes localisées

Cours : Circuit d'adaptation : généralités Cours : Circuits d'adaptation : éléments distribués

Ces circuits sont constitués d'inductances et de capacités discrètes. Les topologies possibles sont nombreuses et sont déterminées essentiellement par le filtrage à réaliser. La figure III.4.32 donne quelques topologies simples. La complexité des circuits dépend du gabarit souhaité pour le filtrage (ordre du filtre). En règle générale, on évite le plus possible l'utilisation d'inductances car ces éléments sont toujours délicats à réaliser avec précision en hautes fréquences.

FIG. III.4.32 – Exemples de topologies

Après avoir choisi une topologie, on détermine par calcul (ou par simulation) les valeurs des éléments. Le circuit le plus simple permet de réaliser une impédance à une fréquence donnée (bande étroite). Les circuits peuvent sensiblement se compliquer si l'on s'intéresse aux impédances ramenées aux fréquences harmoniques ou si l'on recherche une adaptation plus large

Table des matières Concepts Notions Bibliographie

◄ précédent section ▲ suivant ►

bande.

Circuits à constantes localisées

Table des matières Concepts Notions Bibliographie

◄ précédent

section \blacktriangle

III.4.3 Circuits à constantes distribuées

Cours : Circuit d'adaptation : généralités Cours : Circuits d'adaptation : éléments localisés

Les circuits à constantes distribuées sont conçus avec des tronçons de lignes. Les méthodes et outils de calculs nécessaires pour leur conception sont basés sur les lois régissant les phénomènes de propagation, les paramètres S, l'abaque de Smith.

FIG. III.4.33 – Circuits à constantes distribuées

Différentes approches peuvent être envisagées :

- Adaptation par stubs
- Circuits à constantes distribuées

Table des matières Concepts Notions Bibliographie

Adaptation par stubs Cette technique consiste à utiliser un tronçon de ligne de longueur l associée à un stub de longueur d. L'extrémité des stubs peut être soit en court-circuit, soit en circuit ouvert. Le calcul consiste à déterminer les longueurs des stubs et leur position sur la ligne. Ceci peut être fait grâce à l'abaque de Smith ou par optimisation avec un logiciel de CAO. Il est possible de réaliser des adaptations simple stub ou double stub (figure III.4.34).

section **A**

◄ précédent

FIG. III.4.34 – Simple et double stubs

Circuits à éléments distribuées Cette approche consiste à réaliser les valeurs des inductances et capacités localisées avec des tronçons de ligne dont on ajuste l'impédance caractéristique et la longueur. Considérons le schéma de la figure III.4.35 représentant une ligne de transmission d'impédance caractéristique Z_C et de longueur l chargée par une impédance Z_L .

L'impédance Z_E ramenée en entrée de la ligne est donnée par la relation III.4.1.

$$Z_E = Z_C \frac{Z_L + j Z_C \tan(\beta l)}{Z_C + j Z_L \tan(\beta l)}$$

Circuits à constantes distribuées

Table des matières Concepts Notions Bibliographie

Exercices

(III.4.1)

précédent

section \blacktriangle

FIG. III.4.35 – Ligne de transmission

Pour réaliser une inductance : On choisit une valeur d'impédance caractéristique élevée telle que : $Z_C >> Z_L$. Dans ce cas, l'impédance ramenée par la ligne est identifiable à l'impédance d'une inductance.

$$Z_E \approx j Z_C \tan(\beta l) \Leftrightarrow j L \omega \tag{III.4.2}$$

Pour une valeur de Z_C donnée, l'inductance équivalente dépend de la longueur de la ligne (cf équation III.4.3).

$$L = \frac{Z_C \tan(\beta l)}{\omega} \tag{III.4.3}$$

Pour réaliser une capacité : On choisit une valeur d'impédance caractéristique faible telle que : $Z_C << Z_L$. Dans ce cas, l'impédance ramenée par la ligne est identifiable à l'impédance d'une capacité.

$$Z_E \approx \frac{Z_C}{j\tan(\beta l)} \Leftrightarrow \frac{1}{jC\omega}$$
(III.4.4)

Circuits à constantes distribuées

Table des matières Concepts Notions Bibliographie

Exercices

précédent

section \blacktriangle

Pour une valeur de Z_C donnée, la capacité équivalente dépend de la longueur de la ligne (cf équation III.4.3).

$$C = \frac{\tan\left(\beta l\right)}{Z_C \omega} \tag{III.4.5}$$

L'impédance caractéristique Z_C d'une ligne microruban (ou microstrip) est directement liée à la largeur de la ligne : pour réduire Z_C , il faut augmenter la largeur de la ligne et inversement.

Exemple de circuit : Le figure III.4.36 illustre la réalisation d'un circuit constitué de selfs et de capacités avec des éléments distribués équivalents.

FIG. III.4.36 – Exemple de circuit à éléments distribués

Circuits à constantes distribuées

Table des matières Concepts Notions Bibliographie

Exercices

~

III.5 Conception des circuits de polarisation

III.5.1	Les circuits de polarisation	96
111.5.2	Réalisation avec des éléments distribués	98

Table des matières Concepts Notions Bibliographie

III.5.1 Les circuits de polarisation

Cours : Circuit de polarisation : éléments distribués

Les circuits de polarisation sont constitués au minimum d'une capacité de liaison et d'une self de choc. La capacité de liaison est une capacité série de forte valeur, elle est réalisée avec un composant discret (ou par deux lignes couplées).

 $RF \xrightarrow{Cd} RF+DC$

FIG. III.5.37 – Circuit de polarisation

La figure III.5.37 représente un circuit de polarisation classique. Pour assurer un 'bon' courtcircuit RF côté alimentation DC, on connecte plusieurs capacités en parallèle (deux ou trois) de valeurs différentes et couvrant chacune sa gamme de fréquence. On obtient ainsi une impédance

96

Table des matières Concepts Notions Bibliographie

Exercices

section 🔺

suivant ►

très faible sur une très large bande de fréquence. Ces capacités doivent supporter la tension DC de polarisation. La self de choc peut être réalisée par une self à air bobinée. La réalisation de ces selfs étant parfois délicate, on utilise également des selfs spirales imprimées ou des lignes quart d'onde. Le choix de la technique pour réaliser les selfs de choc dépend de la fréquence de travail mais également de l'intensité maximale du courant DC de polarisation (la self ne doit pas servir de fusible !!!).

Table des matières Concepts Notions Bibliographie

Les circuits de

polarisation

Exercices

III.5.2 Réalisation avec des éléments distribués

Cours : Circuit de polarisation : généralités

Ligne quart d'onde + capacité parallèle

Un transformateur d'impédance (précisement un inverseur d'impédance) peut être obtenu (cf figure III.5.38) en utilisant une ligne de transmission de longueur $\lambda/4$ et d'impédance caractéristique Z_C .

 Z_E

FIG. III.5.38 - Ligne quart d'onde

La valeur de l'impédance ramenée en entrée du transformateur (ligne $\lambda/4$) est donnée par la relation III.5.1.

$$Z_E = \frac{Z_C^2}{Z_I}$$

98

Table des matières Concepts Notions Bibliographie

précédent

section 🔺

FIG. III.5.39 – Circuit de polarisation

Une capacité de forte valeur (capacité bypass) est connectée en parallèle à l'extrémité de la ligne quart d'onde (cf figure III.5.39). L'impédance de cette capacité à la fréquence de travail est proche du court-circuit : $Z_L \approx 0$. L'impédance ramenée par la ligne quart d'onde au niveau de la ligne principale est donc trés élevée. Cette ligne ne modifie pas le fonctionnement RF du circuit mais permet en revanche d'alimenter en continu le transistor.

Ligne quart d'onde + stub radial

La capacité du circuit précédent n'est pas toujours facile à réaliser pour différentes raisons technologiques. La solution pour s'en affranchir consiste à utiliser à la place un *stub radial* (cf figure III.5.40). Par un choix approprié du rayon et de l'angle du stub radial, il est possible de ramener à l'extrémité étroite du stub une impédance très faible à la fréquence de travail sans perturber le fonctionnement DC du circuit. D'un point de vue électrique, ce montage se comporte de façon similaire au précédent en DC et à la fréquence de travail. L'intérêt majeur du stub radial réside Réalisation avec des éléments distribués

Table des matières Concepts Notions Bibliographie

Exercices

◄ précédent sect

section 🔺

dans sa simplicité de réalisation.

FIG. III.5.40 – Utilisation d'un stub radial

Réalisation avec des éléments distribués

Table des matières Concepts Notions Bibliographie

Chapitre IV LES MELANGEURS

IV.1	Principe de l'opération de mélange	102
IV.2	Spécifications des mélangeurs	109
IV.3	Exemples de circuits	123
IV.4	Applications des mélangeurs	136

Table des matières Concepts Notions Bibliographie

IV.1 Principe de l'opération de mélange

IV.1.1	Le mélangeur idéal	 3
IV.1.2	Le mélangeur réel .	 ;

Table des matières Concepts Notions Bibliographie

IV.1.1 Le mélangeur idéal

Cours : Mélangeur réel

Un *mélangeur* idéal réalise l'opération mathématique de multiplication de deux signaux. La représentation d'un mélangeur est donnée figure IV.1.1, le mélangeur comporte trois accès : 2 entrées et 1 sortie. Les entrées s'appellent RF (Radio Fréquence) et OL (Oscillateur Local), la sortie s'appelle FI (Fréquence Intermédiaire). Les noms des accès proviennent de l'utilisation initiale en transmission radio des mélangeurs en tant que convertisseurs de fréquence. En général, le signal OL est un signal sinusoïdal de plus forte puissance que le signal RF qui lui peut être modulé. On appelle parfois le signal OL *signal de pompe*, lorsqu'il est appliqué, on dit que le mélangeur est *pompé*

FIG. IV.1.1 - Représentation du mélangeur

Table des matières Concepts Notions Bibliographie

Exercices

Appliquons deux signaux sinusoïdaux $V_{RF}(t)$ et $V_{OL}(t)$ ayant des fréquences respectives F_{RF} et F_{OL} .

 $V_{RF}(t) = A.\cos(\omega_{RF}.t)$ (IV.1.1)

$$V_{OL}(t) = B.\cos(\omega_{OL}.t) \tag{IV.1.2}$$

En supposant que le mélangeur se comporte comme un multiplicateur idéal, le signal de sortie $V_{FI}(t)$ s'écrit :

$$V_{FI}(t) = V_{RF}(t).V_{OL}(t)$$
 (IV.1.3)

$$V_{FI}(t) = A.\cos(\omega_{RF}.t).B.\cos(\omega_{OL}.t)$$
(IV.1.4)

$$V_{FI}(t) = \frac{A.B}{2} \cdot \cos(\omega_{OL} - \omega_{RF}) \cdot t + \frac{A.B}{2} \cdot \cos(\omega_{OL} + \omega_{RF}) \cdot t$$
(IV.1.5)

Le signal de sortie est la somme de deux signaux sinusoïdaux de fréquences $F_{OL} - F_{RF}$ et $F_{OL} + F_{RF}$, appelées *fréquences intermédiaires*. Ces deux fréquences sont également appelées *fréquences somme et différence*, ou encore *fréquence intermédiaire inférieure* ($F_{FI_{INF}}$) et *supérieure* ($F_{FI_{SUP}}$).

$$F_{FLINE} = F_{OL} - F_{RF} \tag{IV.1.6}$$

$$F_{FI_{SUP}} = F_{OL} + F_{RF} \tag{IV.1.7}$$

La figure IV.1.2 montre les spectres des signaux aux différents accès dans le cas d'un mélangeur idéal.

Table des matières Concepts Notions Bibliographie

Exercices

44

104

Le mélangeur

idéal

F_{OL}

FIG. IV.1.2 – Mélangeur idéal : Spectre

Table des matières Concepts Notions Bibliographie

Exercices

IV.1.2 Le mélangeur réel

Cours : Mélangeur idéal

L'opération de multiplication, simple mathématiquement, s'avère être plus difficile à réaliser en électronique analogique où l'on a recours à des composants non-linéaires (diodes ou transistors). Considérons la figure IV.1.3 où l'on applique à l'entrée d'un dispositif non-linéaire un signal $V_E(t)$ constitué de la somme des deux signaux sinusoïdaux $V_{RF}(t)$ et $V_{OL}(t)$.

$$V_E(t) = V_{RF}\cos(\omega_{RF}.t) + V_{OL}\cos(\omega_{OL}.t)$$
(IV.1.8)

FIG. IV.1.3 – Dispositif non-linéaire

La relation non-linéaire reliant le signal de sortie $V_S(t)$ et le signal d'entrée $V_E(t)$ peut s'exprimer de façon générale sous la forme d'un polynôme (IV.1.9).

$$V_{S}(t) = a.V_{E}(t) + b.V_{E}^{2}(t) + c.V_{E}^{3}(t) + \dots$$
(IV.1.9)

Table des matières Concepts Notions Bibliographie

Exercices

◄ précédent

Le développement de l'équation IV.1.9 en fonction des fréquences F_{RF} et F_{OL} montre que l'on obtient, en sortie du mélangeur, ces deux fréquences, leurs harmoniques respectifs et toutes les fréquences de battement $\pm n.F_{RF} \pm m.F_{OL}$ (n et m entiers).

L'apparition de toutes ces fréquences est liée aux contributions des différents termes du polynôme.

```
Le terme a.V_E(t) génère :
V_{RF} \cos \omega_{RF} t + V_{OL} \cos \omega_{OL} t +
```

```
Le terme b.V_E^2(t) génère :

\frac{b}{2} (V_{RF}^2 + V_{OL}^2) + \frac{b}{2} V_{RF}^2 \cos 2\omega_{RF} t + \frac{b}{2} V_{OL}^2 \cos 2\omega_{OL} t + \frac{b}{2} V_{OL} \cos (\omega_{RF} + \omega_{OL}) t + \frac{b}{2} V_{RF} V_{OL} \cos (\omega_{RF} - \omega_{OL}) t + \frac{b}{2} V_{RF} V_{OL} \cos (\omega_{RF} - \omega_{OL}) t + \frac{b}{2} V_{RF} V_{OL} \cos (\omega_{RF} - \omega_{OL}) t + \frac{b}{2} V_{RF} V_{OL} \cos (\omega_{RF} - \omega_{OL}) t + \frac{b}{2} V_{RF} V_{OL} \cos (\omega_{RF} - \omega_{OL}) t + \frac{b}{2} V_{RF} V_{OL} \cos (\omega_{RF} - \omega_{OL}) t + \frac{b}{2} V_{RF} V_{OL} \cos (\omega_{RF} - \omega_{OL}) t + \frac{b}{2} V_{RF} V_{OL} \cos (\omega_{RF} - \omega_{OL}) t + \frac{b}{2} V_{RF} V_{OL} \cos (\omega_{RF} - \omega_{OL}) t + \frac{b}{2} V_{RF} V_{OL} \cos (\omega_{RF} - \omega_{OL}) t + \frac{b}{2} V_{RF} V_{OL} \cos (\omega_{RF} - \omega_{OL}) t + \frac{b}{2} V_{RF} V_{OL} \cos (\omega_{RF} - \omega_{OL}) t + \frac{b}{2} V_{RF} V_{OL} \cos (\omega_{RF} - \omega_{OL}) t + \frac{b}{2} V_{RF} V_{OL} \cos (\omega_{RF} - \omega_{OL}) t + \frac{b}{2} V_{RF} V_{OL} \cos (\omega_{RF} - \omega_{OL}) t + \frac{b}{2} V_{RF} V_{OL} \cos (\omega_{RF} - \omega_{OL}) t + \frac{b}{2} V_{RF} V
```

Le terme $c.V_E^3(t)$ génère : $\left(\frac{3c}{4}V_{RF}^3 + \frac{3c}{2}V_{RF}V_{OL}^2\right)\cos\omega_{RF}t + \left(\frac{3c}{4}V_{OL}^3 + \frac{3c}{2}V_{OL}V_{RF}^2\right)\cos\omega_{OL}t + \frac{c}{4}V_{RF}^3\cos 3\omega_{RF}t + \frac{c}{4}V_{OL}^3\cos 3\omega_{OL}t + \frac{3c}{4}V_{RF}^2V_{OL}\left(\cos\left(2\omega_{RF} + \omega_{OL}\right)t + \cos\left(2\omega_{RF} - \omega_{OL}\right)t\right) + \frac{3c}{4}V_{CL}^2V_{RF}\left(\cos\left(2\omega_{OL} + \omega_{RF}\right)t + \cos\left(2\omega_{OL} - \omega_{RF}\right)t\right) + \frac{3c}{4}V_{CL}^2V_{RF}\left(\cos\left(2\omega_{CL} + \omega_{RF}\right)t + \cos\left(2\omega_{CL} - \omega_{RF}\right)t\right) + \frac{3c}{4}V_{CL}^2V_{RF}\left(\cos\left(2\omega_{CL} + \omega_{RF}\right)t + \frac{3c}{4}V_{CL}^2V_{RF}\left(\cos\left(2\omega_{CL} + \omega_{RF}\right)t\right) + \frac{3c}{4}V_{CL}^2V_{RF}\left(\cos\left(2\omega_{CL} + \omega_{RF}\right)t + \frac{3c}{4}V_{CL}^2V_{RF}\left(\cos\left(2\omega_{CL} + \omega_{RF}\right)t\right) + \frac{3c}{4}V_{CL}^2V_{RF}\left(\cos\left(2\omega_{CL} + \omega_{RF}\right)t + \frac{3c}{4}V_{CL}^2V_{RF}\left(\cos\left(2\omega_{CL} + \omega_{RF}\right)t\right) + \frac{3c}{4}V_{CL}^2V_{RF}\left(\cos\left(2\omega_{CL} + \omega_{RF}\right)t + \frac{3c}{4}V_{CL}^2V_{RF}\left(\cos\left(2\omega_{RF} + \omega_{RF}\right)t\right) + \frac{3c}{4}V_{CL}^2V_{RF}\left(\cos\left(2\omega_{RF}\right)t\right) + \frac{3c}$

Les fréquences $F_{OL} - F_{RF}$ et $F_{OL} + F_{RF}$ correspondant à l'opération de multiplication idéale

Le mélangeur réel

Table des matières Concepts Notions Bibliographie

Exercices

◄ précédent

section 🔺

sont générées par le terme d'ordre 2 du polynôme. Il n'existe pas d'élément non-linéaire capable de générer uniquement les deux fréquences intermédiaires. Néammoins, l'élimination des fréquences indésirables peut être intégrée dans la conception du mélangeur :

- par filtrage des harmoniques
- utilisation de topologies équilibrées (suppression harmoniques pairs)
- utilisation de non-linéarités quadratiques (FET)

La figure IV.1.4 montre un exemple de spectre de sortie.

FIG. IV.1.4 – Mélangeur réel : exemple de spectre de sortie

Le mélangeur réel

Table des matières Concepts Notions Bibliographie
IV.2 Spécifications des mélangeurs

IV.2.1	Pertes/Gain de conversion
IV.2.2	Dynamique
IV.2.3	Facteur de bruit
IV.2.4	Isolations
IV.2.5	Intermodulation
IV.2.6	Fréquence image

Table des matières Concepts Notions Bibliographie

section 🔺 suivant 🕨

IV.2.1 Pertes/Gain de conversion

Le gain de conversion, noté G_C , représente les pertes (ou le gain) entre la sortie FI et l'entrée RF.

$$\mathbf{G}_{\mathbf{C}} = \mathbf{10.log} \left(\frac{\mathbf{P}_{\mathbf{FI}}(\mathbf{F}_{\mathbf{FI}})}{\mathbf{P}_{\mathbf{RF}}(\mathbf{F}_{\mathbf{RF}})} \right)$$
(IV.2.1)

 $P_{FI}(aF_{FI})$ représente la puissance à l'accès FI à la fréquence FI. $P_{RF}(F_{RF})$ représente la puissance à l'accès RF à la fréquence RF.

Le gain de conversion est un écart (en dB) entre deux puissances à des fréquences différentes.

Remarque :

Les mélangeurs à diodes présentent des pertes de conversion alors que les mélangeurs à transistors présentent en général un gain de conversion.

> Table des matières Concepts Notions Bibliographie

section suivant 🕨 Pertes/Gain de conversion P(dBm)P(dBm)Ą Gain de conversion f⊳ RF FI RF FI_1 FI_2 OL Р ٨

Table des matières Concepts Notions Bibliographie

Exercices

111

FIG. IV.2.5 – Gain de conversion

OL

◄ précédent section ▲ suivant ►

IV.2.2 Dynamique

La caractéristique de puissance $P_{FI} = f(P_{RF})$, tracée à $P_{OL} = cst$ est similaire à la caractéristique de puissance d'un amplificateur (cf figure IV.2.6). On distingue une zone dite linéaire pour laquelle le gain de conversion G_C est quasiment constant. Lorsque le niveau de puissance RF augmente, la puissance FI augmente jusqu'à l'apparition du phénomène de *compression* puis de saturation. Le point à 1dB de compression correspond à une diminution de 1dB du *gain de conversion* maximum. Le point de compression à 1dB dépend également du niveau de puissance sur l'accès OL.

La *dynamique* d'un mélangeur est la plage de puissance RF sur laquelle le circuit est utilisable, c'est à dire la plage de puissance où le gain de conversion G_C reste constant. Elle est délimitée par le niveau de bruit minimum (en deçà duquel la puissance FI n'est plus détectable) et le début de la zone de compression.

Remarque :

La dynamique d'un mélangeur est un paramètre important lorsque le mélangeur est utilisé en entrée d'un récepteur. Dans ce cas, le signal RF est issu de l'antenne réceptrice et sa puissance peut varier fortement, il est donc nécessaire d'avoir un maximum de dynamique.

Table des matières Concepts Notions Bibliographie

IV.2.3 Facteur de bruit

Cours : Fréquence image

Le *facteur de bruit* d'un mélangeur est le rapport S/N^1 en entrée divisé par le *rapport S/N* en sortie.

FIG. IV.2.7 – Facteur de bruit

Il existe deux définitions du facteur de bruit :

- Facteur de bruit SSB (Single Side Band)

Le *facteur de bruit* en bande latérale unique F_{SSB} ne prend en compte que le bruit présent en entrée dans la bande RF et qui est converti en sortie sur l'une des deux fréquences FI.

¹Signal/Noise

Table des matières Concepts Notions Bibliographie

Exercices

précédent

$$_{SSB} = 10.log\left(\frac{S/N_{IN}}{S/N_{OUT}}\right) = 10.log\left(\frac{P_{RF}}{P_{FI}}\right) + 10.log\left(\frac{N_{OUT}}{N_{IN}}\right)$$

$$F_{SSB} = -G_C + 10.log\left(\frac{N_{OUT}}{N_{IN}}\right)$$
(IV.2.3)

- Facteur de bruit DSB (Double Side Band)

F

Le *facteur de bruit* en double bande latérale F_{DSB} tient compte du bruit présent en entrée dans la bande RF et IM (*fréquence image*) et qui est converti en sortie sur l'une des deux fréquences FI. Pour un fonctionnement en bande étroite (RF proche de IM) et en supposant que le gain de conversion est identique à RF et IM, la relation entre les facteurs de bruit F_{SSB} et F_{DSB} est donc :

$$F_{DSB} = F_{SSB} - 3dB \tag{IV.2.4}$$

Remarque :

Le facteur de bruit est un paramètre important lorsque le mélangeur est utilisé en entrée d'un récepteur. Dans ce cas, le signal RF est issu de l'antenne réceptrice, sa puissance est souvent très faible et proche du niveau de bruit, il est donc nécessaire d'avoir un bon facteur de bruit afin que le mélangeur n'ajoute pas du bruit supplémentaire au signal reçu.

Table des matières Concepts Notions Bibliographie

Exercices

-

Facteur de bruit

(IV.2.2)

◄ précédent section ▲ suivant ►

IV.2.4 Isolations

Un mélangeur réel ne présente jamais des *isolations* parfaites entre ses différents accès. Typiquement, on observe sur les accès RF et FI des raies à la fréquence OL (cf figure IV.2.8) dûes aux fuites d'OL.

FIG. IV.2.8 - Isolations

On définit généralement deux types d'isolations :

116

Table des matières Concepts Notions Bibliographie

Exercices

précédent

suivant 🕨

Isolation OL-RF Elle est définie par la relation suivante :

$$Isolation_{OL-RF} = 10.log\left(\frac{P_{RF}(F_{OL})}{P_{OL}(F_{OL})}\right)$$
(IV.2.5)

section **A**

 $P_{RF}(F_{OL})$ représente la puissance à l'accès RF à la fréquence OL. $P_{OL}(F_{OL})$ représente la puissance à l'accès OL à la fréquence OL.

- Isolation OL-FI

Elle est définie par la relation suivante :

$$Isolation_{OL-FI} = 10.log\left(\frac{P_{FI}(F_{OL})}{P_{OL}(F_{OL})}\right)$$
(IV.2.6)

 $P_{FI}(F_{OL})$ représente la puissance à l'accès FI à la fréquence OL. $P_{OL}(F_{OL})$ représente la puissance à l'accès OL à la fréquence OL. *Remarques* :

- Les isolations sont définies avec tous les accès du mélangeur chargés sur 50Ω.
- Toutes les puissances intervenant dans les définitions des isolations sont à la même fréquence : la fréquence d'OL.
- L'isolation est un paramètre important pour une application du mélangeur en modulateur d'amplitude DBLPS. Pour ce type d'application, on définit le taux de réjection de porteuse qui est directement lié à l'isolation OL-FI.

Exercices

Isolations

IV.2.5 Intermodulation

Comme pour un amplificateur, l'intermodulation intervient lorsque l'on applique deux signaux de fréquences voisines f_{RF1} et f_{RF2} à l'accès RF. En sortie du mélangeur, on observe des raies aux fréquences : $\pm n. f_{OL} \pm m. f_{RF1} \pm p. f_{RF2}$. L'*intermodulation d'ordre trois* fait intervenir les fréquences : $f_{OL} - (2f_{RF1} - f_{RF2})$ et $f_{OL} - (2f_{RF2} - f_{RF1})$

Ces fréquences sont situées de part et d'autre des fréquences intermédiaires FI. (figure IV.2.9) Les raies d'intermodulation d'ordre trois sont les plus gênantes puisque très proches des signaux aux fréquences intermédiaires. On définit, de façon similaire à un amplificateur, le *rapport d'intermodulation d'ordre trois C/I* (ou IM3) ainsi que le point d'interception.

> Table des matières Concepts Notions Bibliographie

section 🔺

IV.2.6 Fréquence image

Cours : Facteur de bruit

Lorsque un mélangeur est utilisé en entrée d'un récepteur, il convient de prendre quelques précautions par rapport à la *fréquence image* : F_{IM} . Pour illustrer ce qu'est une fréquence image, considérons l'exemple concret de la figure IV.2.10.

FIG. IV.2.10 – Fréquence image : exemple

Table des matières Concepts Notions Bibliographie

Exercices

section

Le mélangeur est utilisé pour translater une fréquence RF de 6.2GHz (signal utile) vers une fréquence intermédiaire de 1.1GHz. Pour ce faire, on utilise un OL dont la fréquence est fixée à 5.1GHz. On obtient donc deux fréquences intermédiaires : 1.1GHz et 11.3GHz. Un filtre passebande centré à 1.1 GHz permet d'éliminer la fréquence intermédiaire 11.3GHz.

Supposons maintenant qu'un signal RF à 4GHz, capté par l'antenne, vienne s'additionner au signal utile à 6.2GHz. Ce signal à 4GHz est converti à 9.1 GHz et à 1.1GHz. Le signal RF à 4GHz, appelé *fréquence image* est donc converti à la même fréquence FI que le signal utile, il y a donc interférence entre ces deux FI à 1.1GHz. La qualité de la réception en sera donc affectée. Pour éviter ce problème, deux possibilités existent :

- Par filtrage :

On place, avant le mélangeur, un filtre sélectif centré sur la fréquence RF utile et réjectant la fréquence image. Cette technique permet d'obtenir une bonne réjection de la fréquence image mais reste limitée aux applications bande étroite.

- Par phasing :

On utilise deux mélangeurs équilibrés associés à des réseaux déphaseurs selon le schéma de la figure IV.2.11. Cette structure constitue un *mélangeur à réjection de fréquence image* (image rejection mixer).

Les combinaisons de phases sont telles que l'on obtient à la fréquence intermédiaire FI sur une voie de sortie le signal utile et sur l'autre voie le signal dû à la *fréquence image*. Cette structure, bien que plus coûteuse que la méthode par filtrage, est très efficace pour des systèmes large bande. Fréquence image

Table des matières Concepts Notions Bibliographie

Exercices

◄ précédent section ▲

FIG. IV.2.11 – Mélangeur à réjection de fréquence image

Fréquence image

Table des matières Concepts Notions Bibliographie

Exercices

chapitre 🔺

IV.3 Exemples de circuits

IV.3.1	Mélangeur simple
IV.3.2	Mélangeur simple équilibré
IV.3.3	Mélangeur double équilibré
IV.3.4	Mélangeur à transistors

Table des matières Concepts Notions Bibliographie

IV.3.1 Mélangeur simple

Cours : Mélangeur simple équilibré Cours : Mélangeur double équilibré

Le mélangeur le plus simple est celui utilisant une diode comme élément non-linéaire associée à un filtre FI selectif.

FIG. IV.3.12 – Single ended mixer : Schéma de principe

Ce circuit simple et peu coûteux présente quelques inconvénients :

- pertes de conversion
- mauvaise isolation OL-RF
- faible dynamique
- applications bande étroite

Table des matières Concepts Notions Bibliographie

Exercices

section ▲ suivant ►

Mélangeur simple

FIG. IV.3.13 – Single ended mixer : exemple de circuit

Table des matières Concepts Notions Bibliographie

Exercices

IV.3.2 Mélangeur simple équilibré

Cours : Mélangeur simple Cours : Mélangeur double équilibré

Les mélangeurs simple équilibrés (Single balanced mixer) sont constitués de deux mélangeurs simples. Ce type de circuit permet notamment de supprimer les harmoniques pairs d'une des deux fréquences d'entrée, en général l'OL. Ceci permet de simplifier en partie le problème du filtrage sur la sortie FI.

FIG. IV.3.14 – Single balanced mixer : Schéma de principe

Table des matières Concepts Notions Bibliographie

Exercices

◄ précédent section ▲ suivant ►

FIG. IV.3.15 - Single balanced mixer : exemple de circuit

Le niveau de l'OL est tel que les diodes fonctionnent en commutation. Elles sont soit toutes passantes ($V_{FI} = 0$), soit toutes bloquées ($V_{FI} = V_{RF}$). Ce circuit hache le signal RF au rythme du signal OL comme le montre la figure IV.3.16

Les principaux avantages par rapport à la version single ended sont :

- Suppression des harmoniques pairs de l'OL à condition que le montage soit bien équilibré.
- Meilleure isolations OL-RF et OL-FI

Table des matières Concepts Notions Bibliographie

Mélangeur simple équilibré

◄ précédent section ▲ suivant ►

Mélangeur simple équilibré

FIG. IV.3.16 – Single balanced mixer : Signal FI

Table des matières Concepts Notions Bibliographie

Exercices

IV.3.3 Mélangeur double équilibré

Cours : Mélangeur simple Cours : Mélangeur simple équilibré

Les mélangeurs double équilibrés (double balanced mixer) sont constitués de deux mélangeurs simples équilibrés. Ce type de circuit permet d'obtenir une symétrie totale et la suppression des harmoniques pairs des deux fréquences RF et OL.

Remarque : Les circuits d'accès s'appellent des *baluns*. Leur structure dépend beaucoup de la plage de fréquence sur laquelle on travaille. En RF, on utilise des transformateurs, en hyperfréquence, on utilise des coupleurs microstrip.

Avantages des mélangeurs double équilibrés :

- Suppression des harmoniques pairs de l'OL et de la RF (et des intermodulations associées).

- Meilleure intermodulation d'ordre trois.
- Applications large bande.

Table des matières Concepts Notions Bibliographie

◄ précédent section ▲ suivant ►

Mélangeur double équilibré

Table des matières Concepts Notions Bibliographie

Exercices

FIG. IV.3.17 – Double balanced mixer : Schéma de principe

130

✓ précédent section ▲ suivant ►

FIG. IV.3.18 – Double balanced mixer : exemple de circuit

FIG. IV.3.19 – Double balanced mixer : Signal FI

Mélangeur double équilibré

Table des matières Concepts Notions Bibliographie

IV.3.4 Mélangeur à transistors

Les mélangeurs à transistors (dits mélangeurs actifs) présentent l'intérêt d'avoir un *gain de conversion* alors que les mélangeurs à diodes (dits mélangeurs passifs) ont des pertes de conversion. En revanche, les mélangeurs actifs nécessitent une alimentation DC pour la polarisation des transistors.

Mélangeur à transistor bipolaire Les mélangeurs à transistors bipolaire présentent un gain de conversion important et un *facteur de bruit* faible. En contre partie, ils présentent des produits d'IM3 élevés et une faible *dynamique*. Comme pour les diodes, il existe des mélangeurs simples, simples équilibrés et doubles équilibrés.

La figure IV.3.20 représente un mélangeur équilibré à *paire différentielle*. Ce circuit est très utilisé en modulateur d'amplitude.

Sa version double équilibrée existe et utilise deux paires différentielles (cellule de Gilbert).

Mélangeur à transistor FET Les transistors FET, de part leur comportement quadratique, conviennent parfaitement pour réaliser des mélangeurs présentant des *dynamiques* importantes et un faible niveau d'*intermodulation*.

Les structures à *paires différentielles* existent aussi avec des transistors FET. La figure IV.3.21 est un exemple de mélangeur simple à FET. Les somme des signaux OL et RF est appliquée sur la grille, la sortie FI est prise sur le drain après filtrage.

Remarques :

Table des matières Concepts Notions Bibliographie

 Il existe des transistors FET spéciaux bi-grille (dual-gate FET), ces composants possèdent deux grilles distinctes et un drain unique. Le signal OL est appliqué sur une grille et le signal RF sur l'autre, la sortie FI est prise sur le drain.

Il existe des mélangeurs dits à FET froid. Dans ce cas, le transistor n'est pas polarisé (Vdso=0 V). Le principe est basé sur la variation de la conductance de sortie en fonction de la tension de grille.

Table des matières Concepts Notions Bibliographie

Exercices

Mélangeur à transistors

précédent

section

précédent

section \blacktriangle

Mélangeur à transistors

Table des matières Concepts

Notions Bibliographie

Exercices

FIG. IV.3.20 – Mélangeur équilibré à paire différentielle à transistors bipolaires

◄ précédent section ▲

Mélangeur à transistors

FIG. IV.3.21 – Mélangeur simple à transistor FET

Table des matières Concepts Notions Bibliographie

IV.4 Applications des mélangeurs

IV.4.1	Conversion de fréquence
IV.4.2	Modulateur d'amplitude DBLPS
IV.4.3	Modulateur de phase BPSK 139
IV.4.4	Démodulateur d'amplitude cohérent
IV.4.5	Comparateur de phase

Table des matières Concepts Notions Bibliographie

IV.4.1 Conversion de fréquence

Une des utilisations la plus importante des mélangeurs est la *conversion de fréquence*. Dans un système de télécommunication, l'information en bande de base module soit l'amplitude, la fréquence ou la phase d'une porteuse. Pour les besoins de la transmission et/ou du traitement de signal, il est nécessaire de changer la fréquence porteuse. Pour cela, on utilise un mélangeur et un oscillateur local.

La conversion de fréquence peut être montante (up-converter) ou descendante (down-converter).

- Up-converter : La fréquence FI est supérieure à la fréquence RF (Emetteurs).
- Down-converter : La fréquence FI est inférieure à la fréquence RF (Récepteurs)

Table des matières Concepts Notions Bibliographie

IV.4.2 Modulateur d'amplitude DBLPS

Lorsque le mélangeur est utilisé en *modulateur* DBLPS², on applique sur l'accès OL la fréquence porteuse et sur l'accès RF le signal modulant en bande de base. Pour un signal modulant sinusoïdal, le spectre du signal FI est constitué de deux fréquences (somme et différence des fréquences RF et OL). Ce spectre est celui d'un signal DBLPS.

Considérons un signal modulant m(t) à la pulsation Ω et une porteuse p(t) à la pulsation ω_p :

$$m(t) = B.\cos\left(\Omega.t\right) \tag{IV.4.1}$$

$$p(t) = A_p \cdot \cos(\omega_p \cdot t) \tag{IV.4.2}$$

L'expression du signal modulé s(t) DBLPS est issu du produit du modulant m(t) par la porteuse p(t):

$$s(t) = p(t).m(t) = \frac{A_p.B}{2}.\cos\left(\omega_p - \Omega\right).t + \frac{A_p.B}{2}.\cos\left(\omega_p + \Omega\right).t$$
(IV.4.3)

Table des matières Concepts Notions Bibliographie

²Double Bande Latérale Porteuse Supprimée

IV.4.3 Modulateur de phase BPSK

Pour une *modulation par déplacement de phase* à deux états (BPSK³ cohérente, on associe aux deux symboles à transmettre deux états de phase φ de la porteuse : 0 et π .

Symboles	0	1
$\varphi(t)$	π	0

TAB. IV.1 – Modulation BPSK

La porteuse modulée s'écrit :

 $x(t) = A \cos\left(2\pi f_0 \cdot t + \varphi(t) + \psi\right) \tag{IV.4.4}$

Dans le cas d'une modulation cohérente, ψ est une constante déterministe. La figure IV.4.22 représente une modulation BPSK cohérente pour $\psi = \pm \pi/2$ et $\psi = 0$. Le signal modulé BPSK s'écrit :

> $\varphi(t) = 0: \ x(t) = A \cdot \cos(2\pi f_0 \cdot t + \psi)$ (IV.4.5) $\varphi(t) = \pi: \ x(t) = -A \cdot \cos(2\pi f_0 \cdot t + \psi)$ (IV.4.6)

Table des matières Concepts Notions Bibliographie

³Binary Phase Shift Keying

FIG. IV.4.22 - Modulation à deux états de phase

Il est donc possible d'écrire un signal modulé BPSK sous la forme d'un signal modulé en amplitude (± 1) à porteuse supprimée. Un *modulateur BPSK* est donc un modulateur DBLPS.

Table des matières Concepts Notions Bibliographie

Modulateur de phase BPSK

IV.4.4 Démodulateur d'amplitude cohérent

Cours : Comparateur de phase

Considérons une porteuse s(t) modulée en amplitude (DBLPC⁴) par un signal modulant m(t).

$$s(t) = A_P \cdot \left(1 + \beta \cdot m(t)\right) \cdot \cos\left(\omega_P \cdot t\right) \tag{IV.4.7}$$

Avec

 A_P : Amplitude crête de la porteuse non modulée

 ω_P : Pulsation de la porteuse

 β : Indice de modulation

La *démodulation cohérente* d'un tel signal consiste à multiplier le signal modulé s(t) par un signal p(t) sinusoïdal de fréquence égale à celle de la porteuse puis de réaliser un filtrage passe-bas (figure IV.4.23)

Les signaux p(t), v(t) et u(t) indiqués sur la figure IV.4.23 s'écrivent de façon idéale :

$$p(t) = B.\cos(\omega_P.t + \psi) \qquad (\text{IV.4.8})$$

$$s(t) = A_P \cdot \left(1 + \beta \cdot m(t)\right) \cdot \cos\left(\omega_P \cdot t\right)$$
(IV.4.9)

⁴Double Bande Latérale Porteuse Conservée

Table des matières Concepts Notions Bibliographie

Exercices

◄ précédent

section ▲ suivant ►

FIG. IV.4.23 – Démodulation cohérente d'amplitude

$$v(t) = \frac{1}{2} \cdot B \cdot A_P \cdot \left(1 + \beta \cdot m(t)\right) \cdot \cos(\psi) + \frac{1}{2} \cdot B \cdot A_P \cdot \left(1 + \beta \cdot m(t)\right) \cdot \cos\left(2\omega_P \cdot t + \psi\right)$$
(IV.4.10)

$$u(t) = \frac{1}{2} \cdot B \cdot A_P \cdot \left(1 + \beta \cdot m(t)\right) \cdot \cos(\psi)$$
 (IV.4.11)

Il faut bien sûr avoir $\psi = 0$ pour que u(t) ait une amplitude maximale. Ce *démodulateur* permet également de démoduler des signaux BPSK.

Table des matières Concepts Notions Bibliographie

Démodulateur d'amplitude

cohérent

Exercices

IV.4.5 Comparateur de phase

Cours: Démodulateur AM cohérent

Le montage précédent du démodulateur cohérent est également utilisé en comparateur de phase. On obtient en sortie du montage une tension proportionnelle à l'écart de phase entre deux signaux.

FIG. IV.4.24 – Montage comparateur de phase

Expressions des signaux :

$$p(t) = B.\cos(\omega t + \psi)$$
(IV.4.12)

$$s(t) = A.\cos(\omega t)$$
(IV.4.13)

$$p(t) = \frac{1}{2}.B.A.\cos(\psi) + \frac{1}{2}.B.\cos(2\omega t + \psi)$$
(IV.4.14)

Table des matières Concepts Notions Bibliographie

◄ précédent

section 🔺

$$u(t) = \frac{1}{2}.B.A.\cos(\psi)$$
 (IV.4.15) Comparateur de phase

La caractéristique $u = f(\psi)$ de ce *comparateur de phase* est en cosinus (entre 0 et $\pi/2$)

Table des matières Concepts Notions Bibliographie
◄ précédent

Annexe A Exercices

A.1	Amplification de puissance	 	6
A.2	Adaptation d'impédance	 	3

Table des matières Concepts Notions Bibliographie

A.1 Amplification de puissance

A.1.1 Analyse des performances de l'amplificateur FLM3742-14D . . 147
A.1.2 Analyse des performances d'un amplificateur à deux étages . . 148

Table des matières Concepts Notions Bibliographie

Exercice A.1.1 Analyse des performances de l'amplificateur FLM3742-14D

section **A**

suivant <

a. Effectuer une lecture détaillée de la documentation technique

b. Calculer au point à 1 dB de compression les paramètres suivants :

- La puissance d'entrée P_E
- La puissance ajoutée PAJ
- La puissance d'alimentation P_{AL}
- Le rendement en puissance ajoutée η_{AJ}
- La puissance dissipée P_{Diss}

c. Pour une puissance d'entrée de 31 dBm :

- Quelles sont les performances de l'amplificateur?
- Calculer dans ce cas le courant fourni par l'alimentation

d. Pour un fonctionnement en biporteuse, déterminer :

- La puissance au point d'interception
- Le rapport C/I pour une puissance de sortie sur une porteuse de 34 dBm
- La puissance d'entrée correspondante sur une porteuse
- La puissance de sortie correspondante sur les raies d'ordre 3

Table des matières Concepts Notions Bibliographie

◄ précédent section **A**

Exercice A.1.2 Analyse des performances d'un amplificateur à deux étages

On souhaite réaliser un amplificateur de puissance fonctionnant dans la bande de fréquences 3.7-4.2 GHz et délivrant une puissance de sortie de 45.5 dBm. Pour ce faire, on adopte une topologie à deux étages utilisant deux circuits FLM3742-14D et un circuit FLM3742-8D.

- Déterminer pour chaque amplificateur les puissances d'entrée et de sortie
- Calculer le gain total de l'amplificateur en supposant les circuits inter-étages (combineur et diviseur) sont sans pertes.
- Déterminer son rendement en puissance ajoutée et la puissance dissipée totale.
- Reprendre cette étude en supposant que les circuits inter-étages présentent 0.5 dB de pertes chacun par voie.

Table des matières Concepts Notions Bibliographie

◄ précédent

section 🔺

FUĴÎTSU FLM 3742-8D

ABSOLUTE MAXIMUM RATINGS (Ambient Temperature Ta = 25°C)

ltem	Symbol	Condition	Rating	Unit
Drain-Source Voltage	V _{DS}		15	v
Gate-Source Voltage	V _{GS}		-5	V
Total Power Dissipation	PT	T _C = 25°C	42.8	w
Storage Temperature	T _{stg}		-65 ~ +175	°C
Channel Temperature	T _{ch}		+175	°C

ELECTRICAL CHARACTERISTICS (Ambient Temperature Ta = 25°C)

	Combal	Test Oren lititese		11.22		
Item	Symbol	lest Conditions	Min.	Typ.	Max.	Unit
Drain Current	I DSS	V_{DS} = 5V, V_{GS} = 0V	-	3600	5400	mA
Transconductance	9m	V _{DS} = 5V, I _{DS} = 2200mA	-	2000		mS
Pinch-off Voltage	V _P	V _{DS} = 5V, I _{DS} = 180mA	-1.0	-2.0	-3.5	v
Gate-Source Breakdown Voltage	V _{GSO}	I _{GS} = -180μA	-5	-		v
Output Power at qdB G.C.P. P _{1dB}			38	39	-	dBm
Power Gain at 1dB G.C.P.	G _{1dB}	V _{DS} = 10V	8	8.5	-	dB
Drain Current	l _{dsr}	$f = 3.7 \sim 4.2 \text{GHz}$	-	2200	2600	mA
Power-added Efficiency	η_{add}	$Z_s = Z_L = 50 \text{ ohm}$	-	31	-	%
Gain Flatness	G ₁	-	-	-	±0.6	dB
3rd Order Inter-Modulation		f = 4.2GHz △f = 10MHz				

Table des matières Concepts Notions Bibliographie

Exercice A.1.2 Analyse des performances

amplificateur à deux étages

d'un

Exercices

◄ précédent

section **A**

Exercice A.1.2 Analyse des

deux étages

Concepts

Notions

Exercices

d'un

S11 S12 S22 S₂₁ FREQ. ANG (MHz) ANG MAG ANG MAG MAG ANG MAG .05 139 .63 17 -167 25 2.17 3500 .61 2 40 177 .06 122 .63 4 63 11 2600

44

précédent

section 🔺

FUĴÎTSU FLM 3742-14D

ABSOLUTE MAXIMUM RATINGS (Ambient Temperature Ta = 25°C)

Item	Symbol	Condition	Rating	Unit
Drain-Source Voltage	V _{DS}		15	V
Gate-Source Voltage	V _{GS}		-5	V
Total Power Dissipation	PT	$T_{C} = 25^{\circ}C$	83.3	W
Storage Temperature	T _{stg}		-65 ~ +175	°C
Channel Temperature	T _{ch}		+175	°c

ELECTRICAL CHARACTERISTICS (Ambient Temperature Ta = 25°C)

			Limit			
Item	Symbol	Test Conditions	Min.	Min. Typ.		Unit
Drain Current	I _{DSS}	V _{DS} = 5V, V _{GS} = 0V	-	8	12	А
Transconductance	ansconductance g _m			4000	 -3.5 	mS
Pinch-off Voltage	V _P	V _{DS} = 5V, I _{DS} = 480mA		-2.0 -		v
Gate-Source Breakdown Voltage	-Source Breakdown Voltage V _{GSO}		-5			v
Output Power at 1dB G.C.P.	P _{1dB}		41.5	42.5	(s ,)	dBm
Power Gain at 1dB G.C.P.	G _{1dB}	V _{DS} = 10V	8.0	9.0	-	dB
Drain Current	l _{dsr}	$f = 3.7 \sim 4.2 GHz$	-	4.8	6.0	A
Power-added Efficiency	η_{add}	$Z_s = Z_L = 50 \text{ ohm}$		32	-	%
Gain Flantness	G ₁			_	±0.6	dB
3rd Order Inter-Modulation	IMa	f = 4.2GHz △f = 10MHz 2-Tone Test	-42	-45	_	dBc

Exercice A.1.2 Analyse des performances d'un amplificateur à deux étages

Table des matières Concepts Notions Bibliographie

précédent

section 🔺

 $V_{Ds} = 10V, I_{DS} = 4.8A$

FREQ.		S ₁₁		S ₂₁		S ₁₂		S ₂₂			
	(MHz)	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG		
	3500	.11	32	3.14	-151	.01	121	.70	50		
	3600	.09	99	3.40	-172	.02	99	.64	32		
	3700	.18	110	3.35	163	.03	79	.57	11		

Exercice A.1.2 Analyse des performances d'un amplificateur à deux étages

Table des matières Concepts Notions Bibliographie

Exercices

A.2 Adaptation d'impédance

A.2.1 Quelques principes de conception de circuits passifs HF 154

Table des matières Concepts Notions Bibliographie

section \blacktriangle

Exercice A.2.1 Quelques principes de conception de circuits passifs HF

On souhaite réaliser les circuits d'adaptation en puissance sur 50Ω d'un transistor à la fréquence de 5 GHz. L'analyse électrique à partir du modèle du transistor a conduit aux valeurs suivantes d'impédance de charge à synthétiser et d'impédance d'entrée présentée :

- Impédance de charge : $Z_L = 7.5 + j44.0\Omega$; $\Gamma_L = 0.844 \angle 96.6 deg$
- − Impédance d'entrée : $Z_E = 3.2 j38.0\Omega$; $\Gamma_E = 0.922 \angle -105.4 deg$

Déterminer les valeurs des quatres éléments (X_1, X_2, X_3, X_4) et leur nature.

Table des matières Concepts Notions Bibliographie

Exercices

section \blacktriangle

b. Adaptation d'impédance par éléments distribués

On utilise un substrat de permittivité $\epsilon_R = 2.55$. On réalise les éléments X_i calculés précédemment avec des tronçons de ligne d'impédances caractéristiques 10Ω et 250Ω . Déterminer l'expression simplifiée d'une inductance et d'une capacité microstrip sachant que l'impédance ramenée d'un tronçon de ligne est :

$$Z = Z \frac{Z_L + jZ_0 \tan(\beta.L)}{Z_0 + jZ_L \tan(\beta.L)}$$

Calculer les longueurs des éléments distribués dans le cas des montages de type passe-bas.

c. Adaptation d'impédance par simple stub

On réalise maintenant l'adaptation par simples stubs en circuit ouvert. Déterminer les positions et les longueurs des stubs avec l'abaque de Smith. Exercice A.2.1 Quelques principes de conception de circuits passifs HF

Table des matières Concepts Notions Bibliographie

Exercices

Index des concepts

Adaptation d'impédance, **76**, 79, 82, 84 Adaptation en gain, 76, **79**, 82, 84 Adaptation en puissance, 76, 79, **82**, 84 Adaptations : comparaisons, 76, 79, 82, **84**

Caractéristiques de puissance, **36**, 40 Caractéristiques statiques du bipolaire, **24** Caractéristiques statiques du FET, **14** Circuit d'adaptation : généralités, **87**, 89, 91 Circuit de polarisation : éléments distribués, 96,

98.

Circuit de polarisation : généralités, **96**, 98 Circuits d'adaptation : éléments distribués, 87, 89, **91**

Circuits d'adaptation : éléments localisés, 87, 89, 91

Classes de fonctionnement : Comparaison, 68

Classes de fonctionnement : Définitions, Classes de fonctionnement : Ex. du FET, Comparateur de phase, 141, Conversion de fréquence,

Démodulateur AM cohérent, **141**, 143 Dynamique d'un mélangeur, **112**

Facteur de bruit, **114**, 120 Fréquence image, 114, **120**

Gain de conversion, 110

Isolations OL/RF - OL/FI, 116

Linéarité d'un amplificateur, 36, **40** Linéarité d'un mélangeur, **118**

Mélangeur à transistors, 132

Table des matières Concepts Notions Bibliographie

Mélangeur double équilibré, 124, 126, **129** Mélangeur idéal, **103**, 106 Mélangeur réel, 103, **106** Mélangeur simple, **124**, 126, 129 Mélangeur simple équilibré, 124, **126**, 129 Modulateur BPSK, **139** Modulateur DBLPS, **138**

Schéma grand signal du bipolaire, **27**, 29 Schéma grand signal du FET, **17**, 19 Schéma petit signal du bipolaire, 27, **29** Schéma petit signal du FET, 17, **19**

Unités de gain et de puissance, 33, 36

Table des matières Concepts Notions Bibliographie

Index des notions

Adaptation d'impédance, 77, **78**, 80 Amplificateur, 5, 64, 66, 68 Angle d'ouverture, 50, 60, 62, 64, 66

Circuit baluns, 129 Circuit de charge, 56 Circuit de polarisation, 56, 77, 87 Classe de fonctionnement, 50, 55, 57, 60, 68 Coefficient de réflexion, 80 Comparateur de phase, 143, 144 Compression, 37, **38**, 40, 42, 44, 78, 82, 84, 112 Conversion de fréquence, 137 Cycle de charge, 68

Décibel, 34 Démodulateur cohérent, 141, 142 Dynamique, 112, 132

Excitation / Réponse, 49

Facteur de bruit, 114, **115**, 132 Filtre, 6 Fonction électronique, 4 Fréquence image, 115, 120, **121** Fréquences intermédiaires, 104

Gain, 34, 37, 51, 65, 68, 78, 80, 84 Gain de conversion, 110, 112, 132

Interception, 44 Intermodulation, 41–43, 118, 132 Isolation, 116, 117

Linéaire, 11, 19, 20, 29, 37, 38, 41, 78, 84

Mélangeur, 5, 103 Modèle boîte noire, 11 Modèle grand signal, 11 Modèle petit signal, 11 Table des matières Concepts Notions Bibliographie

Modulateur d'amplitude, 138 Modulateur de phase, 139, 140

Non-linéaire, 11, 17, 19, **20**, 40, 42, 49, **50**, 57, 59, 82

Paire différentielle, 132 Paramètres S, 79 Puissance, 33, **34**, 37, 40, 50, 64, **65**, 68, 78, 82, 84, 87

Réseaux d'adaptation, 76, 87 Rapport signal à bruit, 114 Rendement, 37, **38**, 51, 65, **66**, 68

Série de Fourier, 62 Schéma simplifié du FET, 58 Source, 6 Stub radial, 99

Tension de commande, 49 Transfert de puissance, 77, 80 Transistor à effet de champ, 14 Transistor bipolaire, 24 Table des matières Concepts Notions Bibliographie

Bibliographie

- [1] R. Badoual. Les Micro-Ondes Composants-Antennes-Fonctions-Mesures, volume II of Electronique. Masson, 1984.
- [2] François de Dieuleveult. Electronique appliquée aux hautes fréquences. DUNOD, 1999.
- [3] P. Antognetti G. Massobrio. *Semiconductor Device Modeling with Spice*. McGraw-Hill, second edition, 1993.
- [4] F. H. Raab H. L. Krauss, C. W. Bostian. Solid State Radio Engineering. John Wiley and Sons, 1980.
- [5] Norman DYE Helge GRANBERG. *Radio Frequency Transistors : Principles and Pratical Applications*. Newnes, second edition, 2001.

Table des matières Concepts Notions Bibliographie