Bioinformatique et calcul haute-performance

Mathieu Giraud
mathieu.giraud@lifl.fr
CNRS, LIFL, Université Lille 1
INRIA Lille Nord-Europe

Séminaire Aristote, École Polytechnique, 16 octobre 2008

Séquences génomiques: ADN et protéines

Séquences génomiques: ADN et protéines

- ADN : $\Sigma_{4}=\{A, C, G, T\}$
- Protéines :
$\Sigma_{20}=\{A, C, D, E, F, G, H, I, K$,
$L, M, N, P, Q, R, S, T, V, W, Y\}$
- Code génétique :

$$
\Sigma_{4} \times \Sigma_{4} \times \Sigma_{4} \longrightarrow \Sigma_{20}
$$

- Bases de données : EMBL (octobre 2008)
- $233 \cdot 10^{9}$ bases
- $155 \cdot 10^{6}$ séquences

code génétique

KVILKTKCFPAMCT ATRCPWKRERETP

Recherches dans les séquences génomiques

- recherches par annotations

Recherches dans les séquences génomiques

>CfOR194| Canis Olfactory Receptor PMYKVILTPIMAYDRYL KLMNIPLMNPLMSATT TLMWNIPLMN...

- recherches par annotations

Recherches dans les séquences génomiques

> >CfOR194 | Canis Olfactory Receptor PMYKVILTPIMAYDRYL KLMNIPLMNPLMSATT TLMWNIPLMN...

>Unknown protein
PMWFGLSMAYDRYCLM NLMHSQWCVNPPIYKV TLIVKYMTAMTPCVI....

- recherches par annotations

Recherches dans les séquences génomiques

>CfOR194 | Canis Olfactory Receptor PMYKVILTPIMAYDRYL KLMNIPLMNPLMSATT TLMWNIPLMN...
>Unknown protein
PMWFGLSMAYDRYCLM NLMHSQWCVNPPIYKV TLIVKYMTAMTPCVI....

- recherches par annotations / recherches par le contenu
- mutation des séquences : recherche par une partie du contenu \longrightarrow recherches de motif, exacts ou approchés

Alignement global : Needleman-Wunsch

Aligner ATGCA et ATCTA

$$
\begin{gathered}
\text { match } \longrightarrow+4 \\
\text { substitution } \longrightarrow-2 \\
\text { gap } \longrightarrow-3
\end{gathered}
$$

Alignement global : Needleman-Wunsch

- $X=\left(x_{1}, x_{2} \ldots x_{m}\right)$ et $Y=\left(y_{1}, y_{2} \ldots y_{n}\right)$
- $H(i, j)$ similarité entre $x_{1} \ldots x_{i}$ et $y_{1} \ldots y_{j}$
$\forall i: \quad H(i, 0)=g_{\text {penalty }} \times i \quad \forall j: \quad H(0, j)=g_{\text {penalty }} \times j$
$\forall i, j, i j \neq 0$:
$H(i, j)=\max \begin{cases}H(i-1, j-1)+d\left(x_{i}, y_{j}\right) & \text { (match ou substitution) } \\ H(i-1, j)-g_{\text {penalty }} & \text { (insertion) } \\ H(i, j-1)-g_{\text {penalty }} & \text { (délétion) }\end{cases}$
$\longrightarrow H(n, m)$ similarité globale entre X et Y

Alignement local: Smith-Waterman

Aligner localement ATGCAC et GTCTAT

$$
\begin{gathered}
\text { match } \longrightarrow+4 \\
\text { substitution } \longrightarrow-2 \\
\text { gap } \longrightarrow-3
\end{gathered}
$$

Alignement local : Smith-Waterman

- $H(i, j)$ score maximum entre toutes les sous-séquences $x_{a} \ldots x_{i}$ et $y_{b} \ldots y_{j}$
$\forall i, j: \quad H(i, 0)=H(0, j)=0 \quad \forall i, j, i j \neq 0:$

$$
H(i, j)=\max \begin{cases}0 & \text { (début d'un nouvel alig.) } \\ H(i-1, j-1)+d\left(x_{i}, y_{j}\right) & \text { (match ou substitution) } \\ H(i-1, j)-g_{\text {penalty }} & \text { (insertion) } \\ H(i, j-1)-g_{\text {penalty }} & \text { (délétion) }\end{cases}
$$

$\longrightarrow \max _{i, j} H(i, j)$ meilleure similarité entre X et Y

Localité du calcul

- Dépendance de trois cellules précédentes
- Seule information extérieure : $d\left(x_{i}, y_{j}\right)$
- Transmission des données vers les trois cellules suivantes

Complexités

Comparaison exhaustive, séquence de taille n contre séquence de taille m :

- $\mathcal{O}(m n)$ cellules
- calcul simultané de m cellules
- espace $\mathcal{O}(m)$

Complexités

Comparaison exhaustive, séquence de taille n contre séquence de taille m :

- $\mathcal{O}(m n)$ cellules
- calcul simultané de m cellules
- espace $\mathcal{O}(m)$

Algorithmes sous-quadratiques?

- Masek et Paterson (1980) :
$\mathcal{O}\left(n^{2} / \log n\right)$ pour scores rationnels
- Crochemore, Landau et Ziv-Ukelson (2002) : $\mathcal{O}\left(h n^{2} / \log n\right) \quad$ (h entropie de la séquence)

Genomic bank sizes and Moore's Law

Sequences databanks size

Genomic bank sizes and Moore's Law

Sequences databanks size and number of transistors in the microprocessors

Architectures spécialisées FPGA

Rdisk

Filtrage de données directement à la sortie des disques durs

Les FPGAs, une puissance de calcul reconfigurable

- Grille de cellules logiques
- Interconnexion (routage)
- Reconfigurable
- Prototypage
- Circuits économiques

2007: 100×10^{6} portes logiques

Les FPGAs, une puissance de calcul reconfigurable

- Grille de cellules logiques
- Interconnexion (routage)
- Reconfigurable
- Prototypage
- Circuits économiques

2007: 100×10^{6} portes logiques

Les FPGAs, une puissance de calcul reconfigurable

- Grille de cellules logiques
- Interconnexion (routage)
- Reconfigurable
- Prototypage
- Circuits économiques

2007: 100×10^{6} portes logiques

Rdisk

Filtrage de données directement à la sortie des disques durs

wapam/Rdisk: vitesse

- Parallélisme
- grain fin: 6 Gop/s
(Spartan II, 40 MHz)
- grain fort : R-disk 48
- Vitesse d'entrée : $16 \mathrm{Mo} / \mathrm{s}$ sur une carte
- $4 \times-10 \times$ speed-up vs PC ($2 \mathrm{GHz}, 728 \mathrm{Mo}$ RAM)
- Temps de calcul pour EMBL

PC : > 2 heures, 1 carte : 35 min, 48 cartes : 40 s

- Temps de compilation : 60-100 secondes

Calculs bioinformatiques sur cartes graphiques

Instruction parallelism

- No parallelism : one instruction, one data
- SIMD (single instruction, multiple data)
- vector processors (1970's), MMX, SSE...
- bit-parallelism
- MIMD (multiple instruction, multiple data)
- clusters, multi-core

Flynn's Taxonomy [wikipedia]

Bioinformatics computations on GPU

- 2005: RAxML
- 2006 : ClustalW
- 2007 : mumMER
- 2008 : Smith-Waterman, spliced sequences, Cell SW
- en cours : PWM, ADP, Séquenceurs

2005: RAxML (phylogeny) [BrookGPU]

Initial Experiences Porting a Bioinformatics Application to a Graphics Processor

Maria Charalambous ${ }^{1}$, Pedro Trancoso ${ }^{1}$, and Alexandros Stamatakis ${ }^{2}$

2005: RAxML (phylogeny) [BrookGPU]

Initial Experiences Porting a Bioinformatics Application to a Graphics Processor

Maria Charalambous ${ }^{1}$, Pedro Trancoso ${ }^{1}$, and Alexandros Stamatakis ${ }^{2}$

2006: GPU-ClustalW [OpenGL Shading Lang]

GPU-ClustalW: Using Graphics Hardware to Accelerate Multiple Sequence Alignment

Weiguo Liu, Bertil Schmidt, Gerrit Voss, and Wolfgang Müller-Wittig

2006 : GPU-ClustalW [OpenGL Shading Lang]

GPU-ClustalW: Using Graphics Hardware to Accelerate Multiple Sequence Alignment

Weiguo Liu, Bertil Schmidt, Gerrit Voss, and Wolfgang Müller-Wittig

Fig. 6. Using the RGBA channels of two-dimensional texture buffers for the computation of $H, E, F, \max , N, N E, F E$ and nid

2006 : ClustalW GPU (Pairwise comparison)

Number of sequences (average length)		200 (412)	400 (408)	600 (462)
ClustalW (P4, 3GHz)	Overall	194.9	891.9	1818.1
	Pairalign	$183.8(94.4 \%)$	$833.1(93.4 \%)$	$1697(93.3 \%)$
	Guided Tree	$0.07(0.03 \%)$	$0.8(0.09 \%)$	$4.1(0.2 \%)$
	Malign	$11.0(5.6 \%)$	$58.0(6.5 \%)$	$117.0(6.4 \%)$
GPU-ClustalW (GeForce 7800)	Overall	27.2	134.1	272.4
	Pairalign	$16.1(59.2 \%)$	$75.3(56.2 \%)$	$151.3(55.5 \%)$
	Guided Tree	$0.07(0.3 \%)$	$0.8(0.6 \%)$	$4.1(1.5 \%)$
	Malign	$11.0(40.4 \%)$	$58.0(43.3 \%)$	$117.0(43 \%)$
Speedups	Overall	7.2	6.7	6.7
	Pairalign	11.4	11.1	11.2

2007 : MUMmerGPU (CUDA)

BMC Bioinformatics

High-throughput sequence alignment using Graphics Processing Units
Michael C Schatz* ${ }^{*+1,2}$, Cole Trapnell ${ }^{\dagger 1,2}$, Arthur L Delcher ${ }^{1,2}$ and Amitabh Varshney ${ }^{2}$

2007: MUMmerGPU (CUDA)

BMC Bioinformatics

High-throughput sequence alignment using Graphics Processing

 UnitsMichael C Schatz* ${ }^{* 1,2}$, Cole Trapnell ${ }^{\dagger 1,2}$, Arthur L Delcher ${ }^{1,2}$ and Amitabh Varshney ${ }^{2}$

Table I: Runtime parameters and speedup for MUMmerGPU test workloads. MUMmerGPU is consistently more than 3 times faster than mummer for a variety of sequencing data.

Reference	Reference length (bp)	\# of queries	Query length mean \pm stdev.	Min alignment length (()	\# of suffix trees (k)	Speedup
C. briggsae Chr. III (Sanger)	$13,163,117$	$2,357,666$	717.84 ± 159.44	100	2	3.71
L. monocytogenes (454)	$2,944,528$	$6,620,471$	200.54 ± 60.51	20	1	1
S. suis (Illumina/Solexa)	$2,007,491$	$26,592,500$	35.96 ± 0.27	20	3.47	

1. Load Reference String
2. Create Suffix Tree
3. Reorder Tree Layout
4. Load Query Strings
5. Transfer data to GPU
6. Execute Query Kernel

- Up to 128 simultaneous matches on GPU

7. Fetch Results from GPU
8. Output results

2007: MUMmerGPU (CUDA)

2008 : Smith-Waterman (CUDA)

BMC Bioinformatics

Research
CUDA compatible GPU cards as efficient hardware accelerators for Smith-Waterman sequence alignment
Svetlin A Manavski* ${ }^{* 1,2}$ and Giorgio Valle ${ }^{1}$

2008 : Smith-Waterman (CUDA)

BMC Bioinformatics

Research
Open Access

CUDA compatible GPU cards as efficient hardware accelerators for

 Smith-Waterman sequence alignmentSvetlin A Manavski* ${ }^{* 1,2}$ and Giorgio Valle ${ }^{1}$

Table 2: Smith-Waterman in CUDA running on single and double GPU vs. BLAST and SSEARCH

Sequence Name	Length	SW-Cuda* Time (s)	MCUPS	SW-Cuda** Time (s)	MCUPS	Ssearch(Fasta) Time (s)	MCUPS	Blast Time (s)	MCUPS
029181	63	2.98	1849	1.547	3561	46	119	3.7	1488
P03630	127	5.88	1889	3.075	3612	93	119	5.7	1948
P53765	255	12.31	1811	6.505	3428	184	121	11	16.3
Q8ZGB4	361	17.44	1810	9.162	3446	275	114	1927	16.6
P58229	511	24.89	1795	13.326	3353	362	123	2691	

2008 : Alignment of spliced sequences (CUDA)

GEAgpu: Improved alignment of spliced DNA sequences to genomic data using Graphics Processing Units

Svetlin A. Manavski, Alessandro Albiero, Claudio Forcato, Nicola Vitulo, Giorgio Valle CRIBI, University of Padova, Padova, Italy E-mail: svetlin.manavski@cribi.unipd.it

- alignement genome / EST
- scan (heuristique)
- puis extension

Runtime (min)	\# of alignments	\# of queries aligned	Runtime factor	
GEAGpu	8		87,596	46,382

2008 : Sequence Alignment (Cell)

BMC Bioinformatics

CBESW: Sequence Alignment on the Playstation 3
Adrianto Wirawan*, Chee Keong Kwoh, Nim Tri Hieu and Bertil Schmidt

2008 : Sequence Alignment (Cell)

BMC Bioinformatics

Software

Open Access
CBESW: Sequence Alignment on the Playstation 3
Adrianto Wirawan*, Chee Keong Kwoh, Nim Tri Hieu and Bertil Schmidt

Projets GPU en cours, Sequoia, LIFL / INRIA Lille

- GPU PWM (Position Weight Matrices)
- Compilateur GPGPU pour méthodologie ADP
- GPU et séquenceurs à haut-débit
- Collaborations, sujets de stage : www.lifl.fr/~giraud
- Soutien de NVIDIA

Projets GPU en cours, Sequoia, LIFL / INRIA Lille

- GPU PWM (Position Weight Matrices)
- avec J.-S. Varré
- speed-up de $10 \times$ à $20 \times$ sur scan et comparaison
- Compilateur GPGPU pour méthodologie ADP
- GPU et séquenceurs à haut-débit
- Collaborations, sujets de stage : www.lifl.fr/~giraud
- Soutien de NVIDIA

GPU PWM Scan (with J.-S. Varré)

GPU PWM Scan (with J.-S. Varré)

H. Boukhatem, A. Ysmal (MSc students)

CPU	Core2 Duo 6600	$2 \times 2.4 \mathrm{GHz}$	$2.0 \mathrm{Gop} / \mathrm{s}$

GPU PWM Scan (with J.-S. Varré)

H. Boukhatem, A. Ysmal (MSc students)

CPU	Core2 Duo 6600	$2 \times 2.4 \mathrm{GHz}$	$2.0 \mathrm{Gop} / \mathrm{s}$
GPU 1	GeForce 8800 GTX	$16 \times 8 \times 576 \mathrm{MHz}$	$21.5 \mathrm{Gop} / \mathrm{s}$
GPU 2	GeForce 8800 GTS	$16 \times 8 \times 650 \mathrm{MHz}$	$24.2 \mathrm{Gop} / \mathrm{s}$
GPU 3	Quadro FX 570	$4 \times 8 \times 208 \mathrm{MHz}$	$2.7 \mathrm{Gop} / \mathrm{s}$

GPU PWM Scan (with J.-S. Varré)

H. Boukhatem, A. Ysmal (MSc students)

CPU	Core2 Duo 6600	$2 \times 2.4 \mathrm{GHz}$	$2.0 \mathrm{Gop} / \mathrm{s}$
	+ TFM-Scan	2.4 GHz	$2-8 \mathrm{Gop} / \mathrm{s}$
GPU 1	GeForce 8800 GTX	$16 \times 8 \times 576 \mathrm{MHz}$	$21.5 \mathrm{Gop} / \mathrm{s}$
GPU 2	GeForce 8800 GTS	$16 \times 8 \times 650 \mathrm{MHz}$	$24.2 \mathrm{Gop} / \mathrm{s}$
GPU 3	Quadro FX 570	$4 \times 8 \times 208 \mathrm{MHz}$	$2.7 \mathrm{Gop} / \mathrm{s}$

- $10 \times$ speed-up

GPU PWM Scan (with J.-S. Varré)

H. Boukhatem, A. Ysmal (MSc students)

CPU	Core2 Duo 6600	$2 \times 2.4 \mathrm{GHz}$	$2.0 \mathrm{Gop} / \mathrm{s}$
	+ TFM-Scan	2.4 GHz	$2-8 \mathrm{Gop} / \mathrm{s}$
GPU 1	GeForce 8800 GTX	$16 \times 8 \times 576 \mathrm{MHz}$	$21.5 \mathrm{Gop} / \mathrm{s}$
GPU 2	GeForce 8800 GTS	$16 \times 8 \times 650 \mathrm{MHz}$	$24.2 \mathrm{Gop} / \mathrm{s}$
GPU 3	Quadro FX 570	$4 \times 8 \times 208 \mathrm{MHz}$	$2.7 \mathrm{Gop} / \mathrm{s}$

- $10 \times$ speed-up
- $2-3 \times$ speed-up compared to dedicated algorithms
- Good scaling on the GPU to 1 GB genomes (500 seconds)

Projets GPU en cours, Sequoia, LIFL / INRIA Lille

- GPU PWM (Position Weight Matrices)
- avec J.-S. Varré
- speed-up de $10 \times$ à $20 \times$ sur scan et comparaison
- Compilateur GPGPU pour méthodologie ADP
- avec P. Steffen, R. Giegerich (Univ. Bielefeld)
- programmation dynamique générique
- GPU et séquenceurs à haut-débit
- Collaborations, sujets de stage : www.lifl.fr/~giraud
- Soutien de NVIDIA

ADP (Algebraic Dynamic Programming)

Generic framework
for dynamic programming

- Sequence alignments
- RNA foldings, co-foldings

ADP (Algebraic Dynamic Programming)

Generic framework
for dynamic programming

- Sequence alignments
- RNA foldings, co-foldings

$$
Z=\mathrm{s}
$$

ADP (Algebraic Dynamic Programming)

> gucaugcaguguca
> $(\ldots)((\ldots)) ..$.

Generic framework for dynamic programming

- Sequence alignments
- RNA foldings, co-foldings

$A n s_{\text {bpmax }} \quad=\quad \mathbb{N}$
bpmax = (nil, right, pair, split, h) where

```
Ans }\mp@subsup{\mp@code{Spmax }}{=}{=
nil}\mp@subsup{\mp@code{bpmax (s) = 0}}{(\textrm{m}}{(
right }\mp@subsup{\mp@code{bpmax (s,b) = s}}{(\textrm{s}}{(
pair bpmax (a,s,b) = s + 1
split
```

$\operatorname{right}(\mathrm{s}, \mathrm{b})=\mathrm{s}$
pair (a,s,b) $=s+1$
split(s,s') $=s+s^{\prime}$
$\mathrm{h}([])=[]$
$\mathrm{h}\left(\left[s_{1}, \ldots, s_{r}\right]\right)=\left[\max _{1<i<r} s_{i}\right]$

Projets GPU en cours, Sequoia, LIFL / INRIA Lille

- GPU PWM (Position Weight Matrices)
- avec J.-S. Varré
- speed-up de $10 \times$ à $20 \times$ sur scan et comparaison
- Compilateur GPGPU pour méthodologie ADP
- avec P. Steffen, R. Giegerich (Univ. Bielefeld)
- programmation dynamique générique
- GPU et séquenceurs à haut-débit
- avec J.-M. Batto, N. Pons, F. Boumezbeur (INRA Jouy)
- projet MetaHIT : méta-génome intestinal humain
- Collaborations, sujets de stage : www.lifl.fr/~giraud
- Soutien de NVIDIA

Perspectives

- Calcul haute-performance : une révolution?
- non dans les concepts

Perspectives

- Calcul haute-performance : une révolution?
- oui dans les concepts, oui économiquement
- $50 \times$ peak speed-up $\longrightarrow 10 \times$ vraiment possible

Perspectives

- Calcul haute-performance: une révolution?
- oui dans les concepts, oui économiquement
- $50 \times$ peak speed-up $\longrightarrow 10 \times$ vraiment possible
- Côté informatique
- Efferverscence, beaucoup de publications en 2008-09
- Intérêt sur réflexion parallèle (et non un simple portage)
- Côté applications biologiques
- Forte demande de solutions accélérées
- Maturité des codes et des APIs ?

Perspectives

- Calcul haute-performance: une révolution?
- oui dans les concepts, oui économiquement
- $50 \times$ peak speed-up $\longrightarrow 10 \times$ vraiment possible
- Côté informatique
- Efferverscence, beaucoup de publications en 2008-09
- Intérêt sur réflexion parallèle (et non un simple portage)
- Côté applications biologiques
- Forte demande de solutions accélérées
- Maturité des codes et des APIs?

Merci !

Résumé

Les données bioinformatiques issues des séquenceurs sont toujours en croissance exponentielle. Aux génomes de référence s'ajoutent maintenant les variations individuelles tout comme les méta-génomes (séquences d'organismes prélevés dans un même milieu).

Nous présenterons dans cet exposé quelques traitements parallèles sur ces données: certains se contentent d'un parallélisme à gros grain, facile à mettre en oeuvre sur cluster ou sur GPU, d'autres demandent des analyses plus fines pour traiter au mieux les différents accès mémoire. La comparaison intensive de séquences est souvent au coeur de ces algorithmes, mais d'autres défis surgissent des dernières technologies, notamment avec les séquenceurs de dernière génération. Nous parlerons aussi d'une méthode générique pour certains problèmes de programmation dynamique.

