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Séquences génomiques : ADN et protéines

I ADN : Σ4 = {A, C , G , T}
I Protéines :

Σ20 = {A, C , D, E , F , G , H, I , K ,
L, M, N, P, Q, R, S , T , V , W , Y }

I Code génétique :
Σ4 × Σ4 × Σ4 −→ Σ20

I Bases de données : EMBL (octobre
2008)

I 233 · 109 bases
I 155 · 106 séquences
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Recherches dans les séquences génomiques

I recherches par annotations

/ recherches par le contenu

I mutation des séquences : recherche par une partie du contenu
−→ recherches de motif, exacts ou approchés
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Alignement global : Needleman-Wunsch

Aligner ATGCA et ATCTA

match −→ +4
substitution −→ −2

gap −→ −3
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Alignement global : Needleman-Wunsch

I X = (x1, x2 . . . xm) et Y = (y1, y2 . . . yn)

I H(i , j) similarité entre x1 . . . xi et y1 . . . yj

∀i : H(i , 0) = gpenalty × i ∀j : H(0, j) = gpenalty × j
∀i , j , ij 6= 0 :

H(i , j) = max


H(i − 1, j − 1) + d(xi , yj) (match ou substitution)
H(i − 1, j)− gpenalty (insertion)
H(i , j − 1)− gpenalty (délétion)

−→ H(n, m) similarité globale entre X et Y
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Alignement local : Smith-Waterman

Aligner localement ATGCAC et GTCTAT

match −→ +4
substitution −→ −2

gap −→ −3
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Alignement local : Smith-Waterman

I H(i , j) score maximum entre toutes les sous-séquences
xa . . . xi et yb . . . yj

∀i , j : H(i , 0) = H(0, j) = 0 ∀i , j , ij 6= 0 :

H(i , j) = max


0 (début d’un nouvel alig.)
H(i − 1, j − 1) + d(xi , yj) (match ou substitution)
H(i − 1, j)− gpenalty (insertion)
H(i , j − 1)− gpenalty (délétion)

−→ maxi,j H(i , j) meilleure similarité entre X et Y
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Localité du calcul

I Dépendance de trois cellules précédentes

I Seule information extérieure : d(xi , yj)

I Transmission des données vers les trois cellules suivantes
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Complexités

Comparaison exhaustive,
séquence de taille n contre
séquence de taille m :

I O(mn) cellules

I calcul simultané de m
cellules

I espace O(m)

Algorithmes sous-quadratiques ?

I Masek et Paterson (1980) :
O(n2/ log n

)
pour scores rationnels

I Crochemore, Landau et Ziv-Ukelson (2002) :
O(hn2/ log n

)
(h entropie de la séquence)
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Genomic bank sizes and Moore’s Law
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Genomic bank sizes and Moore’s Law
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Architectures spécialisées FPGA



Rdisk

Filtrage de données directement à la sortie des disques durs

Système “économique” : < 200 euros de composants
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Les FPGAs, une puissance de calcul reconfigurable

I Grille de cellules logiques

I Interconnexion (routage)

I Reconfigurable

I Prototypage

I Circuits économiques

2007 : 100× 106 portes logiques
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Rdisk

Filtrage de données directement à la sortie des disques durs

Système “économique” : < 200 euros de composants
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wapam/Rdisk : vitesse

I Parallélisme

I grain fin : 6 Gop/s
(Spartan II, 40 MHz)

I grain fort : R-disk 48

I Vitesse d’entrée : 16 Mo/s sur une carte
I 4× – 10× speed-up vs PC (2 GHz, 728 Mo RAM)
I Temps de calcul pour EMBL

PC : > 2 heures, 1 carte : 35 min, 48 cartes : 40 s

I Temps de compilation : 60 – 100 secondes
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Calculs bioinformatiques sur cartes graphiques



Instruction parallelism

Flynn’s Taxonomy [wikipedia]

I No parallelism : one
instruction, one data

I SIMD (single instruction,
multiple data)

I vector processors
(1970’s), MMX,
SSE...

I bit-parallelism

I MIMD (multiple
instruction, multiple
data)

I clusters, multi-core
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Bioinformatics computations on GPU

I 2005 : RAxML

I 2006 : ClustalW

I 2007 : mumMER

I 2008 : Smith-Waterman, spliced sequences, Cell SW

I en cours : PWM, ADP, Séquenceurs
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2005 : RAxML (phylogeny) [BrookGPU]
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Abstract. Bioinformatics applications are one of the most relevant and
compute-demanding applications today. While normally these applica-
tions are executed on clusters or dedicated parallel systems, in this work
we explore the use of an alternative architecture. We focus on exploiting
the compute-intensive characteristics offered by the graphics processors
(GPU) in order to accelerate a bioinformatics application. The GPU
is a good match for these applications as it is an inexpensive, high-
performance SIMD architecture.

In our initial experiments we evaluate the use of a regular graphics
card to improve the performance of RAxML, a bioinformatics program
for phylogenetic tree inference. In this paper we focus on porting to the
GPU the most time-consuming loop, which accounts for nearly 50% of
the total execution time. The preliminary results show that the loop code
achieves a speedup of 3x while the whole application with a single loop
optimization, achieves a speedup of 1.2x.

1 Introduction

The demands from the game application market have been driving the develop-
ment of better and faster architectures. One such example is the development of
the Graphics Cards and more specifically the Graphics Processing Units (GPU).
The GPUs are the responsible entities for drawing the fast moving images that
we observe on the computer screens. To achieve those real-time realistic anima-
tions, the GPUs must perform many floating-point operations per second. As
such, and given that the work performed by the GPUs is dedicated to these
applications, the GPUs are forced to offer many more computational resources
than the general purpose processors (CPU). Given the characteristics of these
applications, performance can easily be improved from the use of vector units,
i.e. using the SIMD programming model. In some way these GPUs have similar
characteristics with the classical supercomputers (e.g. Cray supercomputers).

P. Bozanis and E.N. Houstis (Eds.): PCI 2005, LNCS 3746, pp. 415–425, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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elaborate model such as ML requires significantly more time but yields trees with
superior accuracy than Neighbor Joining [16] or Maximum Parsimony [17,18].
However, due to the higher accuracy it is desirable to infer complex large trees
with ML.

The current version of RAxML incorporates novel fast hill climbing and sim-
ulated annealing heuristics and is, to the best of our knowledge, the currently
fastest and at the same time most accurate program for phylogenetic inference
with ML on real world sequence data. Moreover, it has significantly lower mem-
ory requirements than comparable implementations [19]. Finally, like every ML-
based program, RAxML exhibits a source of fine-grained loop-level parallelism
in the likelihood functions which consume over 90% of the overall computation
time (see Section 3.2).

3.2 RAxML Profiling

Before porting the application to BrookGPU we profiled its execution time in or-
der to identify the most time-consuming portions of the code. We concentrated
our analysis on the loops that had been parallelized for the OpenMP version
of RAxML [20]. For each loop we added instructions to measure the time con-
sumed by the corresponding loop execution and also to measure its frequency.
The execution time was measured with accuracy using the processor’s hardware
performance counters [21]. The results obtained for the test150 input data set
(see Section 4) are presented in Figure 2.

These results show that the most time-consuming piece of code is loop2,
which is visited 4489449 times and accounts for 47% of the total execution time.
Equally important is the fact that the five loops that were identified in the
profiling phase account altogether for 90% of the total execution time. Also, an
analysis of the code shows that the code of the loops is vectorizable without

Loop1
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Loop2
47%

Loop3
5%

Loop4
12%

Loop5
19%

Other
10%

Frequency

Loop1 1838693

Loop2 4489449

Loop3 307377

Loop4 2313330

Loop5 2981833

Fig. 2. Execution time and loop frequency profile of RAxML for test150
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LE [23]. This card has a NV36 graphics processor clocked at 250MHz, 128MB
DDR video memory clocked at 200MHz and the data transfers with the PC are
done through the AGP interface. The NV36 processor includes 3 vertex and 4
pixel pipelines [24].

As for the computer system we used a high-end Intel Pentium 4 3.2GHz based
system with 1GB RAM.

The application used is RAxML as described in Section 3.1. The input data
set used in these experiments is composed of an alignment of 150 sequences or
organisms where each organism is represented by a DNA sequence of a length
of 1269 nucleotides. This input set is named test150.

The environment used was BrookGPU version 0.3 [4] as described in Sec-
tion 2.2. For the experiments, Brook was compiled using the Intel C++ compiler
with the release compile flag, i.e. with full code optimizations.

For the experiments we compare the execution time of running the code on
the regular CPU of the system and on the GPU of the graphics card. We measure
these two situations using the same code as the BrookGPU runtime allows the
user to decide where the code should be executed depending on the value of an
environment variable (BRT RUNTIME). If we set the variable BRT RUNTIME
to cpu the code will execute on the system’s CPU while if we set the variable to
nv30gl it will execute on the card’s GPU.

5 Experimental Results

As previously described, in this preliminary study we focused on porting one
loop, loop2, from the original code to execute on the GPU. The speedup obtained
from executing the modified application on the GPU comparing to the execution
on the CPU is shown in Figure 6.
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LE [23]. This card has a NV36 graphics processor clocked at 250MHz, 128MB
DDR video memory clocked at 200MHz and the data transfers with the PC are
done through the AGP interface. The NV36 processor includes 3 vertex and 4
pixel pipelines [24].

As for the computer system we used a high-end Intel Pentium 4 3.2GHz based
system with 1GB RAM.

The application used is RAxML as described in Section 3.1. The input data
set used in these experiments is composed of an alignment of 150 sequences or
organisms where each organism is represented by a DNA sequence of a length
of 1269 nucleotides. This input set is named test150.

The environment used was BrookGPU version 0.3 [4] as described in Sec-
tion 2.2. For the experiments, Brook was compiled using the Intel C++ compiler
with the release compile flag, i.e. with full code optimizations.

For the experiments we compare the execution time of running the code on
the regular CPU of the system and on the GPU of the graphics card. We measure
these two situations using the same code as the BrookGPU runtime allows the
user to decide where the code should be executed depending on the value of an
environment variable (BRT RUNTIME). If we set the variable BRT RUNTIME
to cpu the code will execute on the system’s CPU while if we set the variable to
nv30gl it will execute on the card’s GPU.

5 Experimental Results

As previously described, in this preliminary study we focused on porting one
loop, loop2, from the original code to execute on the GPU. The speedup obtained
from executing the modified application on the GPU comparing to the execution
on the CPU is shown in Figure 6.
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2006 : GPU-ClustalW [OpenGL Shading Lang]

GPU-ClustalW: Using Graphics Hardware to
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Abstract. Molecular Biologists frequently compute multiple sequence
alignments (MSAs) to identify similar regions in protein families. How-
ever, aligning hundreds of sequences by popular MSA tools such as
ClustalW requires several hours on sequential computers. Due to the
rapid growth of biological sequence databases biologists have to compute
MSAs in a far shorter time. In this paper we present a new approach to
reduce this runtime using graphics processing units (GPUs). To derive
an efficient mapping onto this type of architecture, we have reformulated
the computationally most expensive part of ClustalW in terms of com-
puter graphics primitives. This results in a high-speed implementation
with significant runtime savings on a commodity graphics card.

1 Introduction

Dynamic programming (DP) is often used to compute the optimal local align-
ment of a pair of sequences [1]. However the extension of the DP method for si-
multaneous alignment of multiple sequences is impractical as the time and space
complexities are in the order of the product of the lengths of the sequences. Thus,
many heuristics to compute multiple sequence alignments (MSAs) in reasonable
time have been developed.

Progressive alignment is a widely used heuristic [2]. Examples of popular tools
which are using this approach include ClustalW [3], PRALINE [4], MUSCLE [5],
and T-Coffee [6]. Typically, progressive alignment methods consist of three steps.
Firstly, a distance value between each pair of sequences is computed. Secondly,
a phylogenetic tree is calculated based on this distance matrix. Finally, pair-
wise alignment of various profiles is done following the branching order in the
phylogenetic tree to form the final MSA. Unfortunately, progressive alignment
programs suffer from a high computational complexity, for instance the align-
ment of a few hundred protein sequences using ClustalW requires several hours
on a state-of-the-art workstation.

A popular technique to speedup this time consuming task is to use parallel
processing. The runtime of progressive alignment programs is typically domi-
nated by the first step (computation of pairwise sequence distances). There are
two basic approaches of parallelizing this step: one is based on the systolisation of
the pairwise distance computation algorithm (fine-grained); the other is based

Y. Robert et al. (Eds.): HiPC 2006, LNCS 4297, pp. 363–374, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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(a) (b)

Fig. 6. Using the RGBA channels of two-dimensional texture buffers for the computa-
tion of H , E, F , max, N , NE, FE and nid

render area

Pass k ... Pass M + K - 1

the  result  row

subject sequence texture
(maximum length: K)

Pass 1 ...
query sequence texture
(maximum length: M)

Fig. 7. The rendering process of one passes loop

Figure 7 illustrates the rendering process for one passes loop. Fragment pro-
cessors write computation results of each pass to the render targets. During each
pass, the dimension of the render area on the render targets will change accord-
ing to the current pass number, the maximum length of query sequences and the
maximum length of subject sequences. The final results (nid) will be found at
the bottom row of the render targets at the last pass.
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2006 : ClustalW GPU (Pairwise comparison)

372 W. Liu et al.

Table 2. Comparison of runtimes (in seconds) and speedups of ClustalW running on
a single Pentium4 3GHz to our GPU-ClustalW version running on a Pentium4 3GHz
with an NVIDIA GeForce 7800 GTX 512 for 200, 400, 600, 800, and 1000 input globin
protein sequences

Number of sequences 200 400 600
(average length) (412) (408) (462)

ClustalW Overall 194.9 891.9 1818.1
(P4, 3GHz) Pairalign 183.8 (94.4%) 833.1 (93.4%) 1697 (93.3%)

Guided Tree 0.07 (0.03%) 0.8 (0.09%) 4.1 (0.2%)
Malign 11.0 (5.6%) 58.0 (6.5%) 117.0 (6.4%)

GPU-ClustalW Overall 27.2 134.1 272.4
(GeForce 7800) Pairalign 16.1 (59.2%) 75.3 (56.2%) 151.3 (55.5%)

Guided Tree 0.07 (0.3%) 0.8 (0.6%) 4.1 (1.5%)
Malign 11.0 (40.4%) 58.0 (43.3%) 117.0 (43%)

Speedups Overall 7.2 6.7 6.7
Pairalign 11.4 11.1 11.2

Number of sequences 800 1000
(average length) (454) (446)

ClustalW Overall 3157.6 4711.6
(P4, 3GHz) Pairalign 2966.6 (94%) 4409.6 (93.6%)

Guided Tree 8.0 (0.2%) 16.0 (0.3%)
Malign 183.0 (5.8%) 286.0 (6.1%)

GPU-ClustalW Overall 445.2 680.7
(GeForce 7800) Pairalign 254.2 (57.1%) 378.7 (55.6%)

Guided Tree 8.0 (1.8%) 16.0 (2.4%)
Malign 183.0 (41.1%) 286.0 (42%)

Speedups Overall 7.1 6.9
Pairalign 11.7 11.6

6 Performance Evaluation

We have implemented the proposed algorithm using the high-level GPU pro-
gramming language GLSL (OpenGL Shading Language) [18] and evaluated it
on the following graphics card:

- nVidia GeForce 7800 GTX : 627 MHz engine clock speed, 1.83 GHz memory
clock speed, 8 vertex processors, 24 fragment processors, 512 MB memory.

Tests have been conducted with this card installed in a PC with an Intel
Pentium4 3.0GHz, 1GB RAM running Windows XP.

A set of performance evaluation tests have been conducted using different
numbers of globin protein sequences, to evaluate the processing time of the GPU
implementation versus that of the original ClustalW pairwise alignment stage on
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Abstract
Background: The recent availability of new, less expensive high-throughput DNA sequencing
technologies has yielded a dramatic increase in the volume of sequence data that must be analyzed.
These data are being generated for several purposes, including genotyping, genome resequencing,
metagenomics, and de novo genome assembly projects. Sequence alignment programs such as
MUMmer have proven essential for analysis of these data, but researchers will need ever faster,
high-throughput alignment tools running on inexpensive hardware to keep up with new sequence
technologies.

Results: This paper describes MUMmerGPU, an open-source high-throughput parallel pairwise
local sequence alignment program that runs on commodity Graphics Processing Units (GPUs) in
common workstations. MUMmerGPU uses the new Compute Unified Device Architecture
(CUDA) from nVidia to align multiple query sequences against a single reference sequence stored
as a suffix tree. By processing the queries in parallel on the highly parallel graphics card,
MUMmerGPU achieves more than a 10-fold speedup over a serial CPU version of the sequence
alignment kernel, and outperforms the exact alignment component of MUMmer on a high end CPU
by 3.5-fold in total application time when aligning reads from recent sequencing projects using
Solexa/Illumina, 454, and Sanger sequencing technologies.

Conclusion: MUMmerGPU is a low cost, ultra-fast sequence alignment program designed to
handle the increasing volume of data produced by new, high-throughput sequencing technologies.
MUMmerGPU demonstrates that even memory-intensive applications can run significantly faster
on the relatively low-cost GPU than on the CPU.

Background
Sequence alignment has a long history in genomics
research and continues to be a key component in the anal-
ysis of genes and genomes. Simply stated, sequence align-

ment algorithms find regions in one sequence, called here
the query sequence, that are similar or identical to regions
in another sequence, called the reference sequence. Such
regions may represent genes, conserved regulatory
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reducing the cache hit rate, and increasing the overall
average access time. In addition, even though queries are
the same length, the alignment kernel may not visit the
same number of nodes, nor spend the same amount of
time comparing to edges, because edges in suffix trees
have variable length. This creates divergence among the
threads processing queries, and the multiprocessor will be
forced to serialize their instruction streams. It is difficult to
quantify the relative contribution of these effects, but it is
likely that both are significant sources of performance
loss.

In addition to the test with synthetic data, we also aligned
reads from several recent sequencing projects against the
genomes from which the reads were generated. The
projects included Streptococcus suis sequenced with the
Solexa/Illumina sequencer [26], multiple strains of Liste-
ria monocytogenes sequenced using 454 pyrosequencing
(Genome GenBank ID: NC_003210.1, read TI numbers
1405533909 – 1405634798, 1406562010 –
1406781638, 1407073020 – 1411183505, 1413490052
– 1415592095, 1415816363 – 1415903784) and
Caenorhabditis briggsae sequenced with standard ABI
3730xl Sanger-type sequencing [27]. We aligned the reads
against both strands of the chromosomal DNA for L.
monocytogenes and S. suis, and against both strands of
chromosome III of C. briggsae. Little data from Solexa/Illu-
mina has been made public at the time of this writing, and
the public data set available had only a single lane's worth
of data. To represent the full set of reads from a full Sol-
exa/Illumina run, we concatenated 10 copies of a pub-
licly-available file containing 2,659,250 36 bp reads to
form the S. suis query set. The reference sequence and que-
ries in all three tests did not include ambiguous bases. For
these three tasks, Table 1 shows the runtime parameters
used and the overall speedup of MUMmerGPU over
mummer. Figure 7 shows the wall-clock time spent by
MUMmerGPU in the various phases of the algorithm,
including kernel execution and I/O between CPU and
GPU.

For each of the alignment tasks, MUMmerGPU was
between 3.47 and 3.79 times faster than mummer. For C.
briggsae, MUMmerGPU spent most of its time aligning
queries on the GPU. Because we aligned all of the reads

from the sequence project against chromosome III of the
C. briggsae, many of the reads did not align anywhere in
the reference. As a result, a relatively short amount of time
was spent in writing alignment output to disk. For other
alignments, such as for the L. monocytogenes and S. suis test
sets, the output phase dominates the running time of
MUMmerGPU. For these tasks, printing the output in par-
allel with aligning a block of queries would provide sub-
stantial speedup, as it would hide much of the time spent
aligning queries on the card. We plan to adopt this strat-
egy in a future release of MUMmerGPU.

Despite the performance hazards experienced for longer
simulated reads, MUMmerGPU on the GPU consistently
outperforms mummer on real sequencing data by more
than a factor of three in wall-clock application running
time. Unlike the idealized simulated reads, these reads are
variable length and have sequencing error, which will
cause further divergence in the kernel executions. Further-
more, the C. briggsae alignment required the use of a seg-
mented suffix tree and associated data transfer overhead.
In general, MUMmerGPU confers significant speedup
over mummer on tasks in which many short queries are
aligned to a single long reference.

Conclusion
Operations on the suffix tree have extremely low arithme-
tic intensity – they consist mostly of following a series of
pointers. Thus, sequence alignment with a suffix tree
might be expected to be a poor candidate for a parallel
GPGPU application. However, our results show that a sig-
nificant speedup, as much as a 10-fold speedup, can be
achieved through the use of cached texture memory and
data reordering to improve access locality. This speedup is
realized only for large sets of short queries, but these read
characteristics are beginning to dominate the marketplace
for genome sequencing. For example Solexa/Illumina
sequencing machines create on the order of 20 million 50
bp reads in a single run. For a single human genotyping
application, reads from a few such runs need to be aligned
against the entire human reference genome. Thus our
application should perform extremely well on workloads
commonly found in the near future. The success of our
application is in large part the result of the first truly gen-
eral purpose GPU programming environment, CUDA,

Table 1: Runtime parameters and speedup for MUMmerGPU test workloads. MUMmerGPU is consistently more than 3 times faster 
than mummer for a variety of sequencing data.

Reference Reference length (bp) # of queries Query length 
mean ± stdev.

Min alignment length (l) # of suffix trees (k) Speedup

C. briggsae Chr. III (Sanger) 13,163,117 2,357,666 717.84 ± 159.44 100 2 3.71
L. monocytogenes (454) 2,944,528 6,620,471 200.54 ± 60.51 20 1 3.79
S. suis (Illumina/Solexa) 2,007,491 26,592,500 35.96 ± 0.27 20 1 3.47
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Abstract
Background: The recent availability of new, less expensive high-throughput DNA sequencing
technologies has yielded a dramatic increase in the volume of sequence data that must be analyzed.
These data are being generated for several purposes, including genotyping, genome resequencing,
metagenomics, and de novo genome assembly projects. Sequence alignment programs such as
MUMmer have proven essential for analysis of these data, but researchers will need ever faster,
high-throughput alignment tools running on inexpensive hardware to keep up with new sequence
technologies.

Results: This paper describes MUMmerGPU, an open-source high-throughput parallel pairwise
local sequence alignment program that runs on commodity Graphics Processing Units (GPUs) in
common workstations. MUMmerGPU uses the new Compute Unified Device Architecture
(CUDA) from nVidia to align multiple query sequences against a single reference sequence stored
as a suffix tree. By processing the queries in parallel on the highly parallel graphics card,
MUMmerGPU achieves more than a 10-fold speedup over a serial CPU version of the sequence
alignment kernel, and outperforms the exact alignment component of MUMmer on a high end CPU
by 3.5-fold in total application time when aligning reads from recent sequencing projects using
Solexa/Illumina, 454, and Sanger sequencing technologies.

Conclusion: MUMmerGPU is a low cost, ultra-fast sequence alignment program designed to
handle the increasing volume of data produced by new, high-throughput sequencing technologies.
MUMmerGPU demonstrates that even memory-intensive applications can run significantly faster
on the relatively low-cost GPU than on the CPU.

Background
Sequence alignment has a long history in genomics
research and continues to be a key component in the anal-
ysis of genes and genomes. Simply stated, sequence align-

ment algorithms find regions in one sequence, called here
the query sequence, that are similar or identical to regions
in another sequence, called the reference sequence. Such
regions may represent genes, conserved regulatory
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reducing the cache hit rate, and increasing the overall
average access time. In addition, even though queries are
the same length, the alignment kernel may not visit the
same number of nodes, nor spend the same amount of
time comparing to edges, because edges in suffix trees
have variable length. This creates divergence among the
threads processing queries, and the multiprocessor will be
forced to serialize their instruction streams. It is difficult to
quantify the relative contribution of these effects, but it is
likely that both are significant sources of performance
loss.

In addition to the test with synthetic data, we also aligned
reads from several recent sequencing projects against the
genomes from which the reads were generated. The
projects included Streptococcus suis sequenced with the
Solexa/Illumina sequencer [26], multiple strains of Liste-
ria monocytogenes sequenced using 454 pyrosequencing
(Genome GenBank ID: NC_003210.1, read TI numbers
1405533909 – 1405634798, 1406562010 –
1406781638, 1407073020 – 1411183505, 1413490052
– 1415592095, 1415816363 – 1415903784) and
Caenorhabditis briggsae sequenced with standard ABI
3730xl Sanger-type sequencing [27]. We aligned the reads
against both strands of the chromosomal DNA for L.
monocytogenes and S. suis, and against both strands of
chromosome III of C. briggsae. Little data from Solexa/Illu-
mina has been made public at the time of this writing, and
the public data set available had only a single lane's worth
of data. To represent the full set of reads from a full Sol-
exa/Illumina run, we concatenated 10 copies of a pub-
licly-available file containing 2,659,250 36 bp reads to
form the S. suis query set. The reference sequence and que-
ries in all three tests did not include ambiguous bases. For
these three tasks, Table 1 shows the runtime parameters
used and the overall speedup of MUMmerGPU over
mummer. Figure 7 shows the wall-clock time spent by
MUMmerGPU in the various phases of the algorithm,
including kernel execution and I/O between CPU and
GPU.

For each of the alignment tasks, MUMmerGPU was
between 3.47 and 3.79 times faster than mummer. For C.
briggsae, MUMmerGPU spent most of its time aligning
queries on the GPU. Because we aligned all of the reads

from the sequence project against chromosome III of the
C. briggsae, many of the reads did not align anywhere in
the reference. As a result, a relatively short amount of time
was spent in writing alignment output to disk. For other
alignments, such as for the L. monocytogenes and S. suis test
sets, the output phase dominates the running time of
MUMmerGPU. For these tasks, printing the output in par-
allel with aligning a block of queries would provide sub-
stantial speedup, as it would hide much of the time spent
aligning queries on the card. We plan to adopt this strat-
egy in a future release of MUMmerGPU.

Despite the performance hazards experienced for longer
simulated reads, MUMmerGPU on the GPU consistently
outperforms mummer on real sequencing data by more
than a factor of three in wall-clock application running
time. Unlike the idealized simulated reads, these reads are
variable length and have sequencing error, which will
cause further divergence in the kernel executions. Further-
more, the C. briggsae alignment required the use of a seg-
mented suffix tree and associated data transfer overhead.
In general, MUMmerGPU confers significant speedup
over mummer on tasks in which many short queries are
aligned to a single long reference.

Conclusion
Operations on the suffix tree have extremely low arithme-
tic intensity – they consist mostly of following a series of
pointers. Thus, sequence alignment with a suffix tree
might be expected to be a poor candidate for a parallel
GPGPU application. However, our results show that a sig-
nificant speedup, as much as a 10-fold speedup, can be
achieved through the use of cached texture memory and
data reordering to improve access locality. This speedup is
realized only for large sets of short queries, but these read
characteristics are beginning to dominate the marketplace
for genome sequencing. For example Solexa/Illumina
sequencing machines create on the order of 20 million 50
bp reads in a single run. For a single human genotyping
application, reads from a few such runs need to be aligned
against the entire human reference genome. Thus our
application should perform extremely well on workloads
commonly found in the near future. The success of our
application is in large part the result of the first truly gen-
eral purpose GPU programming environment, CUDA,

Table 1: Runtime parameters and speedup for MUMmerGPU test workloads. MUMmerGPU is consistently more than 3 times faster 
than mummer for a variety of sequencing data.

Reference Reference length (bp) # of queries Query length 
mean ± stdev.

Min alignment length (l) # of suffix trees (k) Speedup

C. briggsae Chr. III (Sanger) 13,163,117 2,357,666 717.84 ± 159.44 100 2 3.71
L. monocytogenes (454) 2,944,528 6,620,471 200.54 ± 60.51 20 1 3.79
S. suis (Illumina/Solexa) 2,007,491 26,592,500 35.96 ± 0.27 20 1 3.47
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which allowed us to directly formulate and implement
our algorithm in terms of suffix tree navigation and not
geometric or graphics operations. This environment made
it possible to efficiently utilize the highly parallel and high
speed 8800 GTX. An 8800 GTX is similar in price to a sin-
gle 3.0 Ghz Xeon core, but offers up to 3.79× speedup in
total application runtime. Furthermore, in the near future,
a common commodity workstation is likely to contain a
CUDA compliant GPU that could be used without any
additional cost.

Even though MUMmerGPU is a low arithmetic memory
intensive program, and the size of the stream processor
cache on the G80 is limited, MUMmerGPU achieved a sig-
nificant speedup, in part, by reordering the nodes to
match the access patterns and fully use the cache. We
therefore expect with careful analysis of the access pattern,
essentially any highly parallel algorithm to perform
extremely well on a relatively inexpensive GPU, and antic-
ipate widespread use of GPGPU and other highly parallel
multicore technologies in the near future. We hope by
making MUMmerGPU available open source, it will act as
a roadmap for a wide class of bioinformatics algorithms
for multi-processor environments.

Availability and requirements
Project name: MUMmerGPU

Project home page: http://mummergpu.sourceforge.net

Operating system(s): Linux, UNIX

Programming language: C, C++, CUDA

Other requirements: nVidia G80 GPU, CUDA 1.0

License: Artistic License

Restrictions to use by non-academics: none.
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building the suffix tree is small compared to time spent align-
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Abstract
Background: Searching for similarities in protein and DNA databases has become a routine
procedure in Molecular Biology. The Smith-Waterman algorithm has been available for more than
25 years. It is based on a dynamic programming approach that explores all the possible alignments
between two sequences; as a result it returns the optimal local alignment. Unfortunately, the
computational cost is very high, requiring a number of operations proportional to the product of
the length of two sequences. Furthermore, the exponential growth of protein and DNA databases
makes the Smith-Waterman algorithm unrealistic for searching similarities in large sets of
sequences. For these reasons heuristic approaches such as those implemented in FASTA and
BLAST tend to be preferred, allowing faster execution times at the cost of reduced sensitivity. The
main motivation of our work is to exploit the huge computational power of commonly available
graphic cards, to develop high performance solutions for sequence alignment.

Results: In this paper we present what we believe is the fastest solution of the exact Smith-
Waterman algorithm running on commodity hardware. It is implemented in the recently released
CUDA programming environment by NVidia. CUDA allows direct access to the hardware
primitives of the last-generation Graphics Processing Units (GPU) G80. Speeds of more than 3.5
GCUPS (Giga Cell Updates Per Second) are achieved on a workstation running two GeForce 8800
GTX. Exhaustive tests have been done to compare our implementation to SSEARCH and BLAST,
running on a 3 GHz Intel Pentium IV processor. Our solution was also compared to a recently
published GPU implementation and to a Single Instruction Multiple Data (SIMD) solution. These
tests show that our implementation performs from 2 to 30 times faster than any other previous
attempt available on commodity hardware.

Conclusions: The results show that graphic cards are now sufficiently advanced to be used as
efficient hardware accelerators for sequence alignment. Their performance is better than any
alternative available on commodity hardware platforms. The solution presented in this paper allows
large scale alignments to be performed at low cost, using the exact Smith-Waterman algorithm
instead of the largely adopted heuristic approaches.
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The Farrar's approach is based on the following consider-
ation: for most cells in the alignment matrix, F remains at
zero and does not contribute to the value of H. Only when
H is greater than Ginit + Gext will F start to influence the
value of H. So firstly F is not considered. Then, if required,
a second step tries to correct the introduced errors. Farrar's
solution completed the search in 161 sec with an average
of 1630 MCUPS and a peak of 2045 MCUPS. Our solu-
tion running on a single GPU turned in a slightly better

time of 154.95 sec with an average of 1783.3 MCUPS and
a peak of 1845 MCUPS. On two GPU devices the search
was completed in 79.65 sec with an average of 3792.2
MCUPS and a peak of 3575 MCUPS. The search times and
resulting MCUPS are shown in Figure 4 and Table 3.

Farrar's solution improves its performances on the longer
sequences, but on the average, it takes longer than our
solution running even on a single GPU. So Smith-Water-
man in CUDA is up to 3 times faster than Farrar's imple-
mentation.

Smith-Waterman in CUDA running on single and double GPU vs. Farrar's solutionFigure 4
Smith-Waterman in CUDA running on single and 
double GPU vs. Farrar's solution. Substitution matrix 
used: BLOSUM50. Gap-open penalty: 10. Gap-extension pen-
alty: 2.
Database used: SwissProt (Rel. 49.1 – 208,005 proteins and 
75,841,138 amino acids).
* Smith-Waterman in CUDA running on an NVidia GeForce 
8800 GTX
** Smith-Waterman in CUDA running on two NVidia 
GeForce 8800 GTX

Smith-Waterman in CUDA running on single and double GPU vs. BLAST and SSEARCHFigure 3
Smith-Waterman in CUDA running on single and 
double GPU vs. BLAST and SSEARCH. Substitution 
matrix used: BLOSUM50. Gap-open penalty: 10. Gap-exten-
sion penalty: 2.
Database used: SwissProt (Dec. 2006 – 250,296 proteins and 
91,694,534 amino acids).
* Smith-Waterman in CUDA running on an NVidia GeForce 
8800 GTX
** Smith-Waterman in CUDA running on two NVidia 
GeForce 8800 GTX

Table 2: Smith-Waterman in CUDA running on single and double GPU vs. BLAST and SSEARCH

Sequence SW-Cuda* SW-Cuda** Ssearch(Fasta) Blast
Name Length Time (s) MCUPS Time (s) MCUPS Time (s) MCUPS Time (s) MCUPS

O29181 63 2.98 1849 1.547 3561 46 119 3.7 1488
P03630 127 5.88 1889 3.075 3612 93 119 5.7 1948
P53765 255 12.31 1811 6.505 3428 184 121 11 2027
Q8ZGB4 361 17.44 1810 9.162 3446 275 114 16.3 1936
P58229 511 24.89 1795 13.326 3353 362 123 16.6 2691

Substitution matrix used: BLOSUM50. Gap-open penalty: 10. Gap-extension penalty: 2.
Database used: SwissProt (Dec. 2006 – 250,296 proteins and 91,694,534 amino acids).
* Smith-Waterman in CUDA running on an NVidia GeForce 8800 GTX
** Smith-Waterman in CUDA running on two NVidia GeForce 8800 GTX
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Abstract
Background: Searching for similarities in protein and DNA databases has become a routine
procedure in Molecular Biology. The Smith-Waterman algorithm has been available for more than
25 years. It is based on a dynamic programming approach that explores all the possible alignments
between two sequences; as a result it returns the optimal local alignment. Unfortunately, the
computational cost is very high, requiring a number of operations proportional to the product of
the length of two sequences. Furthermore, the exponential growth of protein and DNA databases
makes the Smith-Waterman algorithm unrealistic for searching similarities in large sets of
sequences. For these reasons heuristic approaches such as those implemented in FASTA and
BLAST tend to be preferred, allowing faster execution times at the cost of reduced sensitivity. The
main motivation of our work is to exploit the huge computational power of commonly available
graphic cards, to develop high performance solutions for sequence alignment.

Results: In this paper we present what we believe is the fastest solution of the exact Smith-
Waterman algorithm running on commodity hardware. It is implemented in the recently released
CUDA programming environment by NVidia. CUDA allows direct access to the hardware
primitives of the last-generation Graphics Processing Units (GPU) G80. Speeds of more than 3.5
GCUPS (Giga Cell Updates Per Second) are achieved on a workstation running two GeForce 8800
GTX. Exhaustive tests have been done to compare our implementation to SSEARCH and BLAST,
running on a 3 GHz Intel Pentium IV processor. Our solution was also compared to a recently
published GPU implementation and to a Single Instruction Multiple Data (SIMD) solution. These
tests show that our implementation performs from 2 to 30 times faster than any other previous
attempt available on commodity hardware.

Conclusions: The results show that graphic cards are now sufficiently advanced to be used as
efficient hardware accelerators for sequence alignment. Their performance is better than any
alternative available on commodity hardware platforms. The solution presented in this paper allows
large scale alignments to be performed at low cost, using the exact Smith-Waterman algorithm
instead of the largely adopted heuristic approaches.
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The Farrar's approach is based on the following consider-
ation: for most cells in the alignment matrix, F remains at
zero and does not contribute to the value of H. Only when
H is greater than Ginit + Gext will F start to influence the
value of H. So firstly F is not considered. Then, if required,
a second step tries to correct the introduced errors. Farrar's
solution completed the search in 161 sec with an average
of 1630 MCUPS and a peak of 2045 MCUPS. Our solu-
tion running on a single GPU turned in a slightly better

time of 154.95 sec with an average of 1783.3 MCUPS and
a peak of 1845 MCUPS. On two GPU devices the search
was completed in 79.65 sec with an average of 3792.2
MCUPS and a peak of 3575 MCUPS. The search times and
resulting MCUPS are shown in Figure 4 and Table 3.

Farrar's solution improves its performances on the longer
sequences, but on the average, it takes longer than our
solution running even on a single GPU. So Smith-Water-
man in CUDA is up to 3 times faster than Farrar's imple-
mentation.

Smith-Waterman in CUDA running on single and double GPU vs. Farrar's solutionFigure 4
Smith-Waterman in CUDA running on single and 
double GPU vs. Farrar's solution. Substitution matrix 
used: BLOSUM50. Gap-open penalty: 10. Gap-extension pen-
alty: 2.
Database used: SwissProt (Rel. 49.1 – 208,005 proteins and 
75,841,138 amino acids).
* Smith-Waterman in CUDA running on an NVidia GeForce 
8800 GTX
** Smith-Waterman in CUDA running on two NVidia 
GeForce 8800 GTX

Smith-Waterman in CUDA running on single and double GPU vs. BLAST and SSEARCHFigure 3
Smith-Waterman in CUDA running on single and 
double GPU vs. BLAST and SSEARCH. Substitution 
matrix used: BLOSUM50. Gap-open penalty: 10. Gap-exten-
sion penalty: 2.
Database used: SwissProt (Dec. 2006 – 250,296 proteins and 
91,694,534 amino acids).
* Smith-Waterman in CUDA running on an NVidia GeForce 
8800 GTX
** Smith-Waterman in CUDA running on two NVidia 
GeForce 8800 GTX

Table 2: Smith-Waterman in CUDA running on single and double GPU vs. BLAST and SSEARCH

Sequence SW-Cuda* SW-Cuda** Ssearch(Fasta) Blast
Name Length Time (s) MCUPS Time (s) MCUPS Time (s) MCUPS Time (s) MCUPS

O29181 63 2.98 1849 1.547 3561 46 119 3.7 1488
P03630 127 5.88 1889 3.075 3612 93 119 5.7 1948
P53765 255 12.31 1811 6.505 3428 184 121 11 2027
Q8ZGB4 361 17.44 1810 9.162 3446 275 114 16.3 1936
P58229 511 24.89 1795 13.326 3353 362 123 16.6 2691

Substitution matrix used: BLOSUM50. Gap-open penalty: 10. Gap-extension penalty: 2.
Database used: SwissProt (Dec. 2006 – 250,296 proteins and 91,694,534 amino acids).
* Smith-Waterman in CUDA running on an NVidia GeForce 8800 GTX
** Smith-Waterman in CUDA running on two NVidia GeForce 8800 GTX
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Abstract
Background: The exponential growth of available biological data has caused bioinformatics to be
rapidly moving towards a data-intensive, computational science. As a result, the computational
power needed by bioinformatics applications is growing exponentially as well. The recent
emergence of accelerator technologies has made it possible to achieve an excellent improvement
in execution time for many bioinformatics applications, compared to current general-purpose
platforms. In this paper, we demonstrate how the PlayStation® 3, powered by the Cell Broadband
Engine, can be used as a computational platform to accelerate the Smith-Waterman algorithm.

Results: For large datasets, our implementation on the PlayStation® 3 provides a significant
improvement in running time compared to other implementations such as SSEARCH, Striped
Smith-Waterman and CUDA. Our implementation achieves a peak performance of up to 3,646
MCUPS.

Conclusion: The results from our experiments demonstrate that the PlayStation® 3 console can
be used as an efficient low cost computational platform for high performance sequence alignment
applications.

Background
Sequence alignment is a popular bioinformatics applica-
tion that determines the degree of similarity between
nucleotide or amino acid sequences which is assumed to
have same ancestral relationships. The optimal local
alignment of a pair of sequences can be computed by the
dynamic programming (DP) based Smith-Waterman
(SW) algorithm[1]. However, this approach is expensive
in terms of time and memory cost. Furthermore, the expo-
nential growth of available biological data[2] means that
the computational power needed is growing exponen-
tially as well.

The recent emergence of accelerator technologies such as
FPGAs, GPUs and specialized processors have made it

possible to achieve an excellent improvement in execu-
tion time for many bioinformatics applications, com-
pared to current general-purpose platforms. However,
special-purpose hardware implementations such as
FPGAs [3,4] tend to be very expensive and hard-to-pro-
gram. Hence, they are not suitable for many users. Recent
usage of easily accessible accelerator technologies to
improve the search time of the SW algorithm include Intel
SSE2[5], GPU[6] and CUDA[7].

Farrar[5] exploits the SSE2 SIMD multimedia extension of
general-purpose CPUs. His implementation utilizes vec-
tor registers, which are parallel to the query sequence and
are accessed in a striped pattern. Similar to the implemen-
tation by Rognes [8], a query profile is calculated only
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GeForce 8800GTX.

The very rapid growth of biological sequence databases
demands even more powerful high-performance solu-
tions in the near future. Hence, our results are especially
encouraging since high performance computer architec-
tures are developing towards heterogeneous multi-core
systems.

Due to the 256 KB memory limitation of the SPE local
store, the maximum query sequence length in our current
implementation is 852. One of the limiting factors is that

the size of the query profile grows with the length of the
query sequence. Part of our future work is therefore to
tackle this limitation. A promising approach is to align
subject sequences against separate chunks of the query
profile. The complete query profile only needs to be
stored once in the main memory instead of the local store
of the SPE. This frees up more memory space for the SPEs
and thus allows longer query sequences. Given a query
sequence of length l, the query profile can be divided into
n chunks in which each chunks contains a query profile of
size l/n. The respective SPEs can then align a part of the
chunk of the query profile it has and get the next chunk
from outside memory via concurrent DMA transfer.

Availability and requirements
! Project name: CBESW

! Project homepage: http://sourceforge.net/projects/
cbesw/

! Operating system(s): only tested with PlayStation® 3
with Yellow Dog Linux 5.0

! Programming language: C

! Other requirements: Cell SDK 2.0

! License: none

! Any restrictions to use by non-academics: none

Performance comparison with the SSEARCH implementationFigure 6
Performance comparison with the SSEARCH imple-
mentation. Performance comparison between our CBESW 
implementation with SSEARCH, in terms of MCUPS. All que-
ries were run against Swiss-Prot release 55.2. Nine query 
sequences with lengths of 63 to 852 amino acids were used.

Performance comparison with the Striped Smith-Waterman implementationFigure 7
Performance comparison with the Striped Smith-
Waterman implementation. Performance comparison 
between our CBESW implementation with Striped Smith-
Waterman, in terms of MCUPS. All queries were run against 
Swiss-Prot release 55.2. Nine query sequences with lengths 
of 63 to 852 amino acids were used.

Performance comparison with the CUDA implementation on a single Nvidia GeForce 8800GTXFigure 8
Performance comparison with the CUDA implemen-
tation on a single Nvidia GeForce 8800GTX. Perform-
ance comparison between our CBESW implementation with 
CUDA implementation on a single Nvidia GeForce 
8800GTX, in terms of MCUPS. All queries were run against 
Swiss-Prot release 55.2. Seventeen query sequences with 
lengths of 63 to 852 amino acids were used. The scoring 
matrix used for the CUDA implementation was BLOSUM 50.

I 6 processeurs

I SIMD 128 bits

I 3.2 GHz
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Abstract
Background: The exponential growth of available biological data has caused bioinformatics to be
rapidly moving towards a data-intensive, computational science. As a result, the computational
power needed by bioinformatics applications is growing exponentially as well. The recent
emergence of accelerator technologies has made it possible to achieve an excellent improvement
in execution time for many bioinformatics applications, compared to current general-purpose
platforms. In this paper, we demonstrate how the PlayStation® 3, powered by the Cell Broadband
Engine, can be used as a computational platform to accelerate the Smith-Waterman algorithm.

Results: For large datasets, our implementation on the PlayStation® 3 provides a significant
improvement in running time compared to other implementations such as SSEARCH, Striped
Smith-Waterman and CUDA. Our implementation achieves a peak performance of up to 3,646
MCUPS.

Conclusion: The results from our experiments demonstrate that the PlayStation® 3 console can
be used as an efficient low cost computational platform for high performance sequence alignment
applications.

Background
Sequence alignment is a popular bioinformatics applica-
tion that determines the degree of similarity between
nucleotide or amino acid sequences which is assumed to
have same ancestral relationships. The optimal local
alignment of a pair of sequences can be computed by the
dynamic programming (DP) based Smith-Waterman
(SW) algorithm[1]. However, this approach is expensive
in terms of time and memory cost. Furthermore, the expo-
nential growth of available biological data[2] means that
the computational power needed is growing exponen-
tially as well.

The recent emergence of accelerator technologies such as
FPGAs, GPUs and specialized processors have made it

possible to achieve an excellent improvement in execu-
tion time for many bioinformatics applications, com-
pared to current general-purpose platforms. However,
special-purpose hardware implementations such as
FPGAs [3,4] tend to be very expensive and hard-to-pro-
gram. Hence, they are not suitable for many users. Recent
usage of easily accessible accelerator technologies to
improve the search time of the SW algorithm include Intel
SSE2[5], GPU[6] and CUDA[7].

Farrar[5] exploits the SSE2 SIMD multimedia extension of
general-purpose CPUs. His implementation utilizes vec-
tor registers, which are parallel to the query sequence and
are accessed in a striped pattern. Similar to the implemen-
tation by Rognes [8], a query profile is calculated only
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GeForce 8800GTX.

The very rapid growth of biological sequence databases
demands even more powerful high-performance solu-
tions in the near future. Hence, our results are especially
encouraging since high performance computer architec-
tures are developing towards heterogeneous multi-core
systems.

Due to the 256 KB memory limitation of the SPE local
store, the maximum query sequence length in our current
implementation is 852. One of the limiting factors is that

the size of the query profile grows with the length of the
query sequence. Part of our future work is therefore to
tackle this limitation. A promising approach is to align
subject sequences against separate chunks of the query
profile. The complete query profile only needs to be
stored once in the main memory instead of the local store
of the SPE. This frees up more memory space for the SPEs
and thus allows longer query sequences. Given a query
sequence of length l, the query profile can be divided into
n chunks in which each chunks contains a query profile of
size l/n. The respective SPEs can then align a part of the
chunk of the query profile it has and get the next chunk
from outside memory via concurrent DMA transfer.

Availability and requirements
! Project name: CBESW

! Project homepage: http://sourceforge.net/projects/
cbesw/

! Operating system(s): only tested with PlayStation® 3
with Yellow Dog Linux 5.0

! Programming language: C

! Other requirements: Cell SDK 2.0

! License: none

! Any restrictions to use by non-academics: none

Performance comparison with the SSEARCH implementationFigure 6
Performance comparison with the SSEARCH imple-
mentation. Performance comparison between our CBESW 
implementation with SSEARCH, in terms of MCUPS. All que-
ries were run against Swiss-Prot release 55.2. Nine query 
sequences with lengths of 63 to 852 amino acids were used.

Performance comparison with the Striped Smith-Waterman implementationFigure 7
Performance comparison with the Striped Smith-
Waterman implementation. Performance comparison 
between our CBESW implementation with Striped Smith-
Waterman, in terms of MCUPS. All queries were run against 
Swiss-Prot release 55.2. Nine query sequences with lengths 
of 63 to 852 amino acids were used.

Performance comparison with the CUDA implementation on a single Nvidia GeForce 8800GTXFigure 8
Performance comparison with the CUDA implemen-
tation on a single Nvidia GeForce 8800GTX. Perform-
ance comparison between our CBESW implementation with 
CUDA implementation on a single Nvidia GeForce 
8800GTX, in terms of MCUPS. All queries were run against 
Swiss-Prot release 55.2. Seventeen query sequences with 
lengths of 63 to 852 amino acids were used. The scoring 
matrix used for the CUDA implementation was BLOSUM 50.
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I avec J.-M. Batto, N. Pons, F. Boumezbeur (INRA Jouy)
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GPU PWM Scan (with J.-S. Varré)Modélisation par les PWMs Calcul de la P-valeur Calcul du score Résultats expérimentaux
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élément cis-régulateur : court motif nucléique conservé
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Calcul exact et efficace de la P-valeur pour les PWM

H. Boukhatem, A. Ysmal (MSc students)

CPU Core2 Duo 6600 2 × 2.4 GHz 2.0 Gop/s

2 – 8 Gop/s

GPU 1 GeForce 8800 GTX 16× 8× 576 MHz 21.5 Gop/s
GPU 2 GeForce 8800 GTS 16× 8× 650 MHz 24.2 Gop/s
GPU 3 Quadro FX 570 4× 8× 208 MHz 2.7 Gop/s

I 10× speed-up
I 2 – 3× speed-up compared to dedicated algorithms
I Good scaling on the GPU to 1 GB genomes (500 seconds)
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ADP (Algebraic Dynamic Programming)

Generic framework
for dynamic programming

I Sequence alignments

I RNA foldings, co-foldings
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DNA/protein interactions

Figure 1: Summary of our projects illustrated by their relation to the central dogma of molec-
ular biology.
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20 CHAPTER 2. ALGEBRAIC DYNAMIC PROGRAMMING

branching and empty structures. It is easy to see that each tree is a suitable representation
of the corresponding dot-bracket string. Also note that in each of the example trees, the
original sequence can be retrieved by collecting the leaves in a counter-clockwise fashion.
This is what we call the yield of the tree. The yield function y maps candidate trees back
onto their corresponding sequences.

The next important concept is the notion of the signature. The signature describes the
interface to the scoring functions needed in our algorithm. We can derive the signature for
our current example by simply interpreting each of the candidate trees’ node labels as a
function declaration:

nil : {ε} → Ans
right : Ans × A → Ans
pair : A × Ans × A → Ans
split : Ans × Ans → Ans

The symbol Ans is the abstract result domain. In the following, Σ denotes the signature,
TΣ the set of trees over the signature Σ.

With the concepts of yield and signature we are now prepared to give a first definition of
the search space:

Given an input sequence w and a signature Σ, the search space P (w) is the subset of trees
from TΣ, whose yield equals w. More formally, P (w) = {t ∈ TΣ|y(t) = w}.
This would suffice as a very rough description of the search space. In general, we want
to impose more restrictions on it, for example, we want to make sure, that the operator
pair is only used in combination with valid base pairs. For this purpose we introduce the
notion of tree grammar. Figure 2.3 shows grammar nussinov78, origin of our two example
trees. This grammar consists of only one nonterminal, s, and one production with four
alternatives, one for each of the four function symbols that label the nodes. Z denotes the
axiom of the grammar. The symbols base and empty are terminal symbols, representing
an arbitrary base and the empty sequence. The symbol basepairing is a syntactic predicate
that guarantees that only valid base pairs can form a pair -node.

nussinov78 Z = s

s → nil

empty

| right

s base

| pair

base s base
with basepairing

| split

s s

Figure 2.3: Tree grammar nussinov78.

Our refined definition of the search space is the following: Given a tree grammar G over
Σ and A and a sequence w ∈ A∗, the language described by G is L(G) = {t|t ∈ TΣ, t
can be derived from the axiom via the rules of G}. The search space spawned by w is
PG(w) = {t ∈ L(G)|y(t) = w}.

52



ADP (Algebraic Dynamic Programming)

Generic framework
for dynamic programming

I Sequence alignments

I RNA foldings, co-foldings

!"#$!%&%'(&)*+,%-.!"##$%!!&""' ())*&++,,,-./0123425)678-401+9':9;"9#$+<+""'

=7>2!?!0@!9?

/0+12$'3*42)$'&,$(&)$-%,+,%&'$03)0&.2.5

Alphabet

The input RNA sequence is a string over  = {a, c, g, u}.
 is called the alphabet and * denotes the set of

sequences over  of arbitrary length. ! denotes the
empty string. In the following, we denote the input
sequence with w " *.

Search space
Given the input sequence w, the search space is the set of
all possible secondary structures the sequence w can form.
In the ADP terminology, the elements of the search space
for a given input sequence are called candidates. Our next
task is to decide how to represent such candidates. Two
possible ways are shown in Figure 2. The first variant is the
well-known dot-bracket notation, where pairs of match-
ing parentheses are used to denote pairing bases. The sec-
ond variant, the tree representation, is the one we use in
the algebraic approach.

Such a tree representation of candidates is quite com-
monly used in RNA structure analysis, but not so in other
applications of dynamic programming. To appreciate the
scope of the ADP method, it is important to see that such
a representation exists for any application of dynamic pro-
gramming (see appendix).

In our example, the trees are constructed using four differ-
ent node labels. Each label represents a different situation,
which we want to distinguish in the search space and in
the eventual scoring of such a candidate. A node labeled
pair represents the paring of two bases in the input
sequence. The remaining nodes right, split and nil repre-

sent unpaired, branching and empty structures. It is easy
to see that each tree is a suitable representation of the cor-
responding dot-bracket string. Also note that in each of
the example trees, the original sequence can be retrieved
by collecting the leaves in a counter-clockwise fashion.
This is what we call the yield of the tree. The yield function
y maps candidate trees back onto their corresponding
sequences.

The next important concept is the notion of the signature.
The signature describes the interface to the scoring func-
tions needed in our algorithm. We can derive the signa-
ture for our current example by simply interpreting each
of the candidate trees' node labels as a function
declaration:

The symbol Ans is the abstract result domain. In the fol-
lowing, # denotes the signature, T

# the set of trees over the
signature #.

With the concepts of yield and signature we are now pre-
pared to give a first definition of the search space: Given
an input sequence w and a signature #, the search space
P(w) is the subset of trees from T

#
, whose yield equals w.

More formally, P(w) = {t " T
#
|y(t) = w}.

This would suffice as a very rough description of the
search space. In general, we want to impose more restric-
tions on it, for example, we want to make sure, that the
operator pair is only used in combination with valid base
pairs. For this purpose we introduce the notion of tree
grammar. Figure 3 shows grammar nussinov78, origin of
our two example trees. This grammar consists of only one
nonterminal, s, and one production with four alternatives,
one for each of the four function symbols that label the
nodes. Z denotes the axiom of the grammar. The symbols
base and empty are terminal symbols, representing an arbi-
trary base and the empty sequence. The symbol basepairing
is a syntactic predicate that guarantees that only valid base
pairs can form a pair-node.

Our refined definition of the search space is the following:
Given a tree grammar  over # and  and a sequence w

" *, the language described by  is  = {t|t " T
#
,

t can be derived from the axiom via the rules of }. The
search space spawned by w is
 .

Two candidates in the search space for the best secondary structure for the sequence gucaugcagugucaFigure 2
Two candidates in the search space for the best secondary 
structure for the sequence gucaugcaguguca.
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2.2. ALGEBRAIC DYNAMIC PROGRAMMING BY EXAMPLE 21

From the language theoretic viewpoint, PG(w) is the set of all parses of the sequence w for
grammar G. The method we use for constructing the search space is called yield parsing.
See Section 2.5 for a detailed description of yield parsing.

Scoring Given an element of the search space as a tree t ∈ L(G), we need to score this
element. In our example we are only interested in counting base pairs, so scoring is very
simple: The score of a tree is the number of pair -nodes in t. For the two candidates of
Figure 2.2 we obtain scores of 3 (t1) and 4 (t2). To implement this, we provide definitions
for the functions that make up our signature Σ:

Ansbpmax = IN
nilbpmax(s) = 0
rightbpmax(s,b) = s
pairbpmax(a,s,b) = s + 1
splitbpmax(s,s’) = s + s’

In mathematics, the interpretation of a signature by a concrete value set and functions
operating thereon is called an algebra. Hence, scoring schemes are algebras in ADP. Our
first example is the algebra bpmax for maximizing the number of base pairs. The subscript
bpmax attached to the function names indicates, that these definitions are interpretations of
the function under this algebra. In the following, we will omit these subscripts.

The flexibility of the algebraic approach lies in the fact that we don’t have to stop with
definition of one algebra. Simply define another algebra and get other results for the same
search space. We will introduce a variety of algebras for our second, more elaborate example
in Section 2.2.3.

Objective The tree grammar describes the search space, the algebra the scoring of so-
lution candidates. Still missing is our optimization objective. For this purpose we add an
objective function h to the algebra which chooses one or more elements from a list of can-
didate scores. An algebra together with an objective function forms an evaluation algebra.
Thus algebra bpmax becomes:

Ansbpmax = IN

bpmax = (nil, right, pair, split, h) where
nil(s) = 0
right(s,b) = s
pair(a,s,b) = s + 1
split(s,s’) = s + s’
h([]) = []
h([s1, . . . , sr]) = [ max

1≤i≤r
si]

A given candidate t can be evaluated in many different algebras; we use the notation E(t)
to indicate the value obtained from t under evaluation with algebra E .
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Projets GPU en cours, Sequoia, LIFL / INRIA Lille

I GPU PWM (Position Weight Matrices)
I avec J.-S. Varré
I speed-up de 10× à 20× sur scan et comparaison

I Compilateur GPGPU pour méthodologie ADP
I avec P. Steffen, R. Giegerich (Univ. Bielefeld)
I programmation dynamique générique

I GPU et séquenceurs à haut-débit

I avec J.-M. Batto, N. Pons, F. Boumezbeur (INRA Jouy)
I projet MetaHIT : méta-génome intestinal humain

I Collaborations, sujets de stage : www.lifl.fr/∼giraud

I Soutien de NVIDIA
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Perspectives

I Calcul haute-performance : une révolution ?
I non dans les concepts

, oui économiquement
I 50× peak speed-up −→ 10× vraiment possible

I Côté informatique
I Efferverscence, beaucoup de publications en 2008-09
I Intérêt sur réflexion parallèle (et non un simple portage)

I Côté applications biologiques
I Forte demande de solutions accélérées
I Maturité des codes et des APIs ?

Merci !
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I Côté applications biologiques
I Forte demande de solutions accélérées
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Résumé

Les données bioinformatiques issues des séquenceurs sont toujours en
croissance exponentielle. Aux génomes de référence s’ajoutent
maintenant les variations individuelles tout comme les méta-génomes
(séquences d’organismes prélevés dans un même milieu).

Nous présenterons dans cet exposé quelques traitements parallèles sur ces

données : certains se contentent d’un parallélisme à gros grain, facile à

mettre en oeuvre sur cluster ou sur GPU, d’autres demandent des

analyses plus fines pour traiter au mieux les différents accès mémoire. La

comparaison intensive de séquences est souvent au coeur de ces

algorithmes, mais d’autres défis surgissent des dernières technologies,

notamment avec les séquenceurs de dernière génération. Nous parlerons

aussi d’une méthode générique pour certains problèmes de

programmation dynamique.
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