

REAL-TIME SYSTEMS
Design Principles for Distributed

Embedded Applications

THE KLUWER INTERNATIONAL SERIES

IN ENGINEERING AND COMPUTER SCIENCE

REAL-TIME SYSTEMS
Consulting Editor

John A. Stankovic

FAULT-TOLERANT REAL-TIME SYSTEMS: The Problem of Replica Determinism,

by Stefan Poledna, ISBN: 0-7923-9657-X

RESPONSIVE COMPUTER SYSTEMS: Steps Toward Fault-Tolerant Real-Time

Systems, by Donald Fussell and Miroslaw Malek, ISBN: 0-7923-9563-8

IMPRECISE AND APPROXIMATE COMPUTATION, by Swaminathan Natarajan,

FOUNDATIONS OF DEPENDABLE COMPUTING: System Implementation, edited
by Gary M. Koob and Clifford G. Lau, ISBN: 0-7923-9486-0

FOUNDATIONS OF DEPENDABLE COMPUTING: Paradigms for Dependable

Applications, edited by Gary M. Koob and Clifford G. Lau,

FOUNDATIONS OF DEPENDABLE COMPUTING: Models and Frameworks for

Dependable Systems, edited by Gary M. Koob and Clifford G. Lau,

ISBN: 0-7923-9579-4

ISBN: 0-7923-9485-2

ISBN: 0-7923-9484-4

THE TESTABILITY OF DISTRIBUTED REAL-TIME SYSTEMS,

Werner Schütz; ISBN: 0-7923-9386-4

A PRACTITIONER'S HANDBOOK FOR REAL-TIME ANALYSIS: Guide to Rate

Monotonic Analysis for Real-Time Systems, Carnegie Mellon University (Mark Klein,

Thomas Ralya, Bill Pollak, Ray Obenza, Michale González Harbour);
ISBN: 0-7923-9361-9

FORMAL TECHNIQUES IN REAL-TIME FAULT-TOLERANT SYSTEMS, J.

Vytopil; ISBN: 0-7923-9332-5

SYNCHRONOUS PROGRAMMING OF REACTIVE SYSTEMS, N. Halbwachs;

REAL-TIME SYSTEMS ENGINEERING AND APPLICATIONS, M. Schiebe, S.
Pferrer; ISBN: 0-7923-9196-9

SYNCHRONIZATION IN REAL-TIME SYSTEMS: A Priority Inheritance Approach,

R. Rajkumar; ISBN: 0-7923-9211-6

CONSTRUCTING PREDICTABLE REAL TIME SYSTEMS, W. A. Halang, A. D.

Stoyenko; ISBN: 0-7923-9202-7

FOUNDATIONS OF REAL-TIME COMPUTING: Formal Specifications and Methods,

A. M. van Tilborg, G. M. Koob; ISBN: 0-7923-9167-5

FOUNDATIONS OF REAL-TIME COMPUTING: Scheduling and Resource

Management, A. M. van Tilborg, G. M. Koob; ISBN: 0-7923-9166-7

REAL-TIME UNIX SYSTEMS: Design and Application Guide, B. Furht, D. Grostick,

D. Gluch, G. Rabbat, J. Parker, M. McRoberts, ISBN: 0-7923-9099-7

ISBN: 0-7923-9311-2

REAL-TIME SYSTEMS
Design Principles for Distributed

Embedded Applications

by

Hermann Kopetz

Technische Universität Wien

KLUWER ACADEMIC PUBLISHERS

New York / Boston / Dordrecht / London / Moscow

eBook ISBN: 0-306-47055-1

Print ISBN: 0-792-39894-7

©2002 Kluwer Academic Publishers
New York, Boston, Dordrecht, London, Moscow

Print

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Kluwer Online at: http://kluweronline.com
and Kluwer's eBookstore at: http://ebooks.kluweronline.com

©1997 Kluwer Academic Publishers

All rights reserved

Boston

for Renate

Pia, Georg, and Andreas

Trademark Notice

Ada is a trademark of the US DoD

UNIX is a trademark of UNIX Systems Laboratories

Table of Contents

Chapter 1: The Real-Time Environment 1

1.2 Functional Requirements3

1.3 Temporal Requirements ...6

1.4 Dependability Requirements ...9

1.5 Classification of Real-Time Systems 12

1.6 The Real-Time Systems Market .. 16

1.7 Examples of Real-Time Systems 21

Points to Remember ... 24

Bibliographic Notes... 26

Review Questions and Problems .. 26

Chapter 2: Why a Distributed Solution?... 29

Overview ... 29

2.1 System Architecture... 30

2.2 Composability.. 34

2.3 Scalability ... 36

Overview ... 1

1.1 When is a Computer System Real-Time?........................... 2

2.4 Dependability.. 39

2.5 Physical Installation ... 42

Review Questions and Problems ... 44

Chapter 3: Global Time... 45

Overview ... 45

3.1 Time and Order .. 46

3.2 Time Measurement... 51

3.3 Dense Time versus Sparse Time.. 55

3.4 Internal Clock Synchronization .. 59

3.5 External Clock Synchronization .. 65

Points to Remember ... 67

Bibliographic Notes .. 68

Points to Remember.. 42

Bibliographic Notes.. 44

viii TABLE OF CONTENTS

Review Questions and Problems..69

Chapter 4: Modeling Real-Time Systems71

Overview.. 71

4.1 Appropriate Abstractions..72

4.2 The Structural Elements... 75
4.3 Interfaces... 77

4.4 Temporal Control.. 82

4.5 Worst-case Execution Time... 86

4.6 The History State... 91

Points to Remember... 93

Bibliographic Notes ... 94

Review Questions and Problems.. 95

Chapter 5: Real-Time Entities and Images97

Overview...97

5.1 Real-Time Entities .. 98

5.2 Observations ... 99

Real-Time Images and Real-Time Objects101

5.4 Temporal Accuracy ...102

Permanence and Idempotency..108

Points to Remember.. 116

Review Questions And Problems .. 118

Chapter 6: Fault Tolerance... 191

Overview ..119

Failures. Errors, and Faults ..120

6.2 Error Detection ...126

A Node as a Unit of Failure ..129

6.4 Fault-Tolerant Units ...131

6.6 Design Diversity ... 137

Points to Remember .. 140

Review Questions and Problems ..143

Chapter 7: Real-Time Communication ..145

Overview ..145

7.1 Real-Time Communication Requirements146

7.2 Flow Control ...149

7.3 OSI Protocols For Real-Time ... 154

7.4 Fundamental Conflicts in Protocol Design 157
7.5 Media-Access Protocols ...159

5.3

5.5

5.6 Replica Determinism ...111

Bibliographic Notes.. 118

6.1

6.3

6.5 Reintegration of a Repaired Node .. 135

Bibliographic Notes ...142

PREFACE ix

7.6 Performance Comparison: ET versus TT.................................164

7.7 The Physical Layer ..166

Points to Remember ...168

Bibliographic Notes ... 169

Review Questions and Problems .. 170

Chapter 8: The Time-Triggered Protocols171

Overview...171

8.1 Introduction to Time-Triggered Protocols172

8.2 Overview of the TTP/C Protocol Layers 175

8.3 The Basic CNI .. 178

8.4

8.5 TTP/A for Field Bus Applications .. 185

Points to Remember..188

Bibliographic Notes .. 190

Review Questions and Problems.. 190

Chapter 9: Input/Output...193

Overview...193

9.1 The Dual Role of Time ...194

9.2 Agreement Protocol..196

9.3 Sampling and Polling ..198

9.4 Interrupts ..201

9.5 Sensors and Actuators ..203

9.6 Physical Installation ... 207

Points to Remember ..208

Bibliographic Notes ... 209

Review Questions and Problems209

Chapter 10: Real-Time Operating Systems211

Overview...211

10.1 Task Management ... 212

10.2 Interprocess Communication .. 216

10.3 Time Management .. 218

10.4 Error Detection ... 219

10.5 A Case Study: ERCOS .. 221

Points to Remember..223

Bibliographic Notes .. 224

Review Questions and Problems ... 224

Chapter 11: Real-Time Scheduling 227

Overview..227

11.1 The Scheduling Problem...228

11.2 The Adversary Argument..229

11.3 Dynamic Scheduling ..231

Internal Operation of TTP/C ...181

x TABLE OF CONTENTS

11.4 Static Scheduling ...237

Points to Remember...240

Bibliographic Notes..242

Review Questions and Problems .. 242

Chapter 12: Validation ..245

Overview..245

12.1 Building a Convincing Safety Case246

12.2 Formal Methods .. 248

12.3 Testing .. 250

12.4 Fault Injection..253

12.5 Dependability Analysis ..258

Points to Remember.. 261

Bibliographic Notes...262

Review Questions and Problems.. 262

Chapter 13: System Design 265

Overview.. 265

13.1 The Design Problem .. 266

13.2 Requirements Analysis ... 269

13.3 Decomposition of a System... 272

13.4 Test of a Decomposition ... 275

13.5 Detailed Design and Implementation.................................... 277

13.6 Real-Time Architecture Projects278

Points to Remember...282

Bibliographic Notes ..283

Review Questions and Problems... 283

Chapter 14: The Time-Triggered Architecture. 285

Overview...285

14.1 Lessons Learned from the MARS Project.............................286

14.2 The Time- Triggered Architecture 288

14.3 Software Support .. 292

14.4 Fault Tolerance... 294

14.5 Wide-Area Real-Time Systems...295

Points to Remember... 296

Bibliographic Notes ... 297

List of Abbreviations... .299

Glossary. 301

References..317

Index.. .329

Preface

The primary objective of this book is to serve as a textbook for a student taking a

senior undergraduate or a first-year graduate one-semester course on real-time systems.

The focus of the book is on hard real-time systems, which are systems that must

meet their temporal specification in all anticipated load and fault scenarios. It is

assumed that a student of computer engineering, computer science or electrical

engineering taking this course already has a background in programming, operating

systems, and computer communication. The book stresses the system aspects of

distributed real-time applications, treating the issues of real-time, distribution, and

fault-tolerance from an integral point of view. The selection and organization of the

material have evolved from the annual real-time system course conducted by the

author at the Technische Universitat Wien for more than ten years. The main topics
..

of this book are also covered in an intensive three-day industrial seminar entitled The

Systematic Design of Embedded Real-Time Systems. This seminar has been

presented many times in Europe, the USA and Asia to professionals in the industry.

This cross fertilization between the academic world and the industrial world has led to

the inclusion of many insightful examples from the industrial world to explain the

fundamental scientific concepts in a real-world setting. These examples are mainly

taken from the emerging field of embedded automotive electronics that is acting as a

catalyst for technology in the current real-time systems market.

The secondary objective of this book is to provide a reference book that can be used
by professionals in the industry. An attempt is made to explain the relevance of the

latest scientific insights to the solution of everyday problems in the design and

implementation of distributed and embedded real-time systems. The demand of our

industrial sponsors to provide them with a document that explains the present state of

the art of real-time technology in a coherent, concise, and understandable manner has

been a driving force for this book. Because the cost/effectiveness of a method is a

major concern in an industrial setting, the book also looks at design decisions from

an economic viewpoint. The recent appearance of cost-effective powerful system

xii PREFACE

chips has a momentous influence on the architecture and economics of future

distributed system solutions. The composability of an architecture, i.e., the

capability to build dependable large systems out of pre-tested components with

minimal integration effort, is one of the great challenges for designers of the next

generation of real-time systems. The topic of composability is thus a recurring theme

throughout the book.

The material of the book is organized into three parts comprising a total of fourteen

Chapters, corresponding to the fourteen weeks of a typical semester. The first part

from Chapters 1 to 6, provides an introduction and establishes the fundamental

concepts. The second part from Chapters 7 to 12, focuses on techniques and methods.

Finally, the third part from Chapters 13 and 14, integrates the concepts developed

throughout the book into a coherent architecture.

The first two introductory chapters discuss the characteristics of the real-time

environment and the technical and economic advantages of distributed solutions. The

concern over the temporal behavior of the computer is the distinctive feature of a real-

time system. Chapter 3 introduces the fundamental concepts of time and time

measurement relevant to a distributed computer system. It covers intrinsically

difficult material and should therefore be studied carefully. The second half of this

Chapter (Section 3.4 and 3.5) on internal and external clock synchronization can be

omitted in a first reading. Chapters 4 and 5 present a conceptual model of a

distributed real-time system and introduce the important notions of temporal

accuracy, permanence, idempotency, and replica determinism. Chapter 6 introduces

the field of dependable computing as it relates to real-time systems and concludes the

first part of the book.

The second part of the book starts with the topic of real-time communication,

including a discussion about fundamental conflicts in the design of real-time

communication protocols. Chapter 7 also briefly introduces a number of event-

triggered real-time protocols, such as CAN, and ARINC 629. Chapter 8 presents a

new class of real-time communication protocols, the time-triggered protocols, which

have been developed at the author at the Technische Univers ität Wien. The time-

triggered protocol TTP is now under consideration by the European automotive

industry for the next generation of safety-critical distributed real-time applications

onboard vehicles, Chapter 9 is devoted to the issues of input/output. Chapter 10

discusses real-time operating systems. It contains a case study of a new-generation

operating system, ERCOS, for embedded applications, which is used in modern

automotive engine controllers. Chapter 11 covers scheduling and discusses some of

the classic results from scheduling research. The new priority ceiling protocol for

scheduling periodic dependent tasks is introduced. Chapter 12 is devoted to the topic

of validation, including a section on hardware- and software-implemented fault

injection.

The third part of the book comprises only two chapters: Chapter 13 on "System

Design" and Chapter 14 on the "Time-Triggered Architecture". System design is a

creative process that cannot be accomplished by following the rules of a "design rule

book". Chapter 13, which is somewhat different from the other chapters of the book,

PREFACE xiii

takes a philosophical interdisciplinary look at design from a number of different

perspectives. It then presents a set of heuristic guidelines and checklists to help the

designer in evaluating design alternatives. A number of relevant real-time architecture

projects that have been implemented during the past ten years are discussed at the end

of Chapter 13. Finally, Chapter 14 presents the "Time-Triggered Architecture" which

has been designed by the author at the Technische Universität Wien. "Time-Triggered

Architecture" is an attempt to integrate many of the concepts and techniques that have

been developed throughout the text.

The Glossary is an integral part of the book, providing definitions for many of the

technical terms that are used throughout the book. A new term is highlighted by

italicizing it in the text at the point where it is introduced. If the reader is not sure

about the meaning of a term, she/he is advised to refer to the glossary. Terms that are

considered important in the text are also italicized.

At the end of each chapter the important concepts are summarized in the section

"Points to Remember". Every chapter closes with a set of discussive and numerical

problems that cover the material presented in the chapter.

ACKNOWLEDGMENTS

Over a period of a decade, many of the more than 1000 students who have attended

the "Real-Time Systems" course at the Technische Universität Wien have

contributed, in one way or another, to the extensive lecture notes that were the basis

of the book.

The insight gained from the research at our Institut für Technische Informatik at the

Technische Universität Wien formed another important input. The extensive

experimental work at our institute has been supported by numerous sponsors, in

particular the ESPRIT project PDCS, financed by the Austrian FWF, the ESPRIT

LTR projects DEVA, and the Brite Euram project X-by-Wire. We hope that the

recently started ESPRIT OMI project TTA (Time Triggered Architecture) will result

in a VLSI implementation of our TTP protocol.

I would like to give special thanks to Jack Stankovic, from the University of

Massachusetts at Amherst, who encouraged me strongly to write a book on "Real-

Time Systems", and established the contacts with Bob Holland, from Kluwer

Academic Publishers, who coached me throughout this endeavor.

The concrete work on this book started about a year ago, while I was privileged to

spend some months at the University of California in Santa Barbara. My hosts,

Louise Moser and Michael Melliar-Smith, provided an excellent environment and

were willing to spend numerous hours in discussions over the evolving manuscript–

thank you very much. The Real-Time Systems Seminar that I held at UCSB at that

time was exceptional in the sense that I was writing chapters of the book and the

students were asked to correct the chapters.

In terms of constructive criticism on draft chapters I am especially grateful to the

comments made by my colleagues at the Technische Universitat Wien: Heinz..

xiv PREFACE

Appoyer, Christian Ebner, Emmerich Fuchs, Thomas Führer, Thomas Galla, Rene

Hexel, Lorenz Lercher, Dietmar Millinger, Roman Pallierer, Peter Puschner, Andreas

Krüger, Roman Nossal, Anton Schedl, Christopher Temple, Christoph Scherrer, and

Andreas Steininger.

Special thanks are due to Priya Narasimhan from UCSB who carefully edited the

book and improved the readability tremendously.

A number of people read and commented on parts of the book, insisting that I

improve the clarity and presentation in many places. They include Jack Goldberg

from SRI, Menlo Park, Cal., Markus Krug from Daimler Benz, Stuttgart, Stefan

Poledna from Bosch, Vienna, who contributed to the section on the ERCOS

operating system, Krithi Ramamritham from the University of Massachusetts,

Amherst, and Neeraj Suri from New Jersey Institute of Technology.

Errors that remain are, of course, my responsibility alone.

Finally, and most importantly, I would like to thank my wife, Renate, and our

children, Pia, Georg, and Andreas, who endured a long and exhausting project that

took away a substantial fraction of our scarce time.

Hermann Kopetz

Vienna, Austria, January 1997

Chapter 1

The Real-Time Environment

OVERVIEW

The purpose of this introductory chapter is to describe the environment of real-time

computer systems from a number of different perspectives. A solid understanding of

the technical and economic factors which characterize a real-time application helps to

interpret the demands that the system designer must cope with. The chapter starts

with the definition of a real-time system and with a discussion of its functional and

metafunctional requirements. Particular emphasis is placed on the temporal

requirements that are derived from the well-understood properties of control

applications. The objective of a control algorithm is to drive a process so that a

performance criterion is satisfied. Random disturbances occurring in the environment

degrade system performance and must be taken into account by the control algorithm.

Any additional uncertainty that is introduced into the control loop by the control

system itself, e.g., a non-predictable jitter of the control loop, results in a degradation

of the quality of control.

In the Sections 1.2 to 1.5 real-time applications are classified from a number of

viewpoints. Special emphasis is placed on the fundamental differences between hard

and soft real-time systems. Because soft real-time systems do not have catastrophic

failure modes, a less rigorous approach to their design is often followed. Sometimes

resource-inadequate solutions that will not handle the rarely occurring peak-load

scenarios are accepted on economic arguments. In a hard real-time application, such

an approach is unacceptable because the safety of a design in all specified situations,

even if they occur only very rarely, must be demonstrated vis-a-vis a certification

agency. In Section 1.6, a brief analysis of the real-time system market is carried out

with emphasis on the field of embedded real-time systems. An embedded real-time

system is a part of a self-contained product, e.g., a television set or an automobile. In

the future, embedded real-time systems will form the most important market segment

for real-time technology.

2 CHAPTER 1 THE REAL-TIME ENVIRONMENT

1.1

A real-time computer system is a computer system in which the correctness of the

system behavior depends not only on the logical results of the computations, but

also on the physical instant at which these results are produced.

A real-time computer system is always part of a larger system–this larger system is
called a real-time system. A real-time system changes its state as a function of

physical time, e.g., a chemical reaction continues to change its state even after its

controlling computer system has stopped. It is reasonable to decompose a real-time

system into a set of subsystems called clusters (Figure 1.1) e.g., the controlled object

(the controlled cluster), the real-time computer system (the computational cluster) and

the human operator (the operator cluster). We refer to the controlled object and the

operator collectively as the environment of the real-time computer system.

WHEN IS A COMPUTER SYSTEM REAL-TIME?

Figure 1.1: Real-time system.

If the real-time computer system is distributed, it consists of a set of (computer)

nodes interconnected by a real-time communication network (see also Figure 2.1).

The interface between the human operator and the real-time computer system is called

the man-machine interface, and the interface between the controlled object and the

real-time computer system is called the instrumentation interface. The man-machine

interface consists of input devices (e.g., keyboard) and output devices (e.g., display)

that interface to the human operator. The instrumentation interface consists of the

sensors and actuators that transform the physical signals (e.g., voltages, currents) in

the controlled object into a digital form and vice versa. A node with an

instrumentation interface is called an interface node.

A real-time computer system must react to stimuli from the controlled object (or the

operator) within time intervals dictated by its environment. The instant at which a

result must be produced is called a deadline. If a result has utility even after the

deadline has passed, the deadline is classified as soft, otherwise it is firm. If a

catastrophe could result if a firm deadline is missed, the deadline is called hard.

Consider a railway crossing a road with a traffic signal. If the traffic signal does not
change to "red" before the train arrives, a catastrophe could result. A real-time

computer system that must meet at least one hard deadline is called a hard real-time

CHAPTER 1 THE REAL-TIME ENVIRONMENT 3

computer system or a safety-critical real-time computer system. If no hard real-time

deadline exists, then the system is called a soft real-time computer system.

The design of a hard real-time system is fundamentally different from the design of a

soft real-time system. While a hard real-time computer system must sustain a

guaranteed temporal behavior under all specified load and fault conditions, it is

permissible for a soft real-time computer system to miss a deadline occasionally. The

differences between soft and hard real-time systems will be discussed in detail in the

following sections. The focus of this book is on the design of hard real-time

systems.

1.2 FUNCTIONAL REQUIREMENTS

The functional requirements of real-time systems are concerned with the functions

that a real-time computer system must perform. They are grouped into data collection

requirements, direct digital control requirements, and man-machine interaction

requirements.

1.2.1 Data Collection

A controlled object, e.g., a car or an industrial plant, changes its state as a function

of time. If we freeze time, we can describe the current state of the controlled object by

recording the values of its state variables at that moment. Possible state variables of

a controlled object "car" are the position of the car, the speed of the car, the position

of switches on the dash board, and the position of a piston in a cylinder. We are

normally not interested in all state variables, but only in the subset of state variables

that is significant for our purpose. A significant state variable is called a real-time

(RT) entity.

Every RT entity is in the sphere of control (SOC) of a subsystem, i.e., it belongs to

a subsystem that has the authority to change the value of this RT entity. Outside its

sphere of control, the value of an RT entity can be observed, but cannot be modified.

For example, the current position of a piston in a cylinder of the engine of a

controlled car object is in the sphere of control of the car. Outside the car, the current

position of the piston can only be observed.

Figure 1.2: Temporal accuracy of the traffic light information.

4 CHAPTER 1 THE REAL-TIME ENVIRONMENT

The first functional requirement of a real-time computer system is the observation of

the RT entities in a controlled object and the collection of these observations. An

observation of an RT entity is represented by a real-time (RT) image in the computer

system. Since the state of the controlled object is a function of real time, a given RT

image is only temporally accurate for a limited time interval. The length of this time

interval depends on the dynamics of the controlled object. If the state of the controlled

object changes very quickly, the corresponding RT image has a very short accuracy

interval.

Example: Consider the example of Figure 1.2, where a car enters an intersection

controlled by a traffic light. How long is the observation "the traffic light is green"

temporally accurate? If the information "the traffic light is green" is used outside its

accuracy interval, i.e., a car enters the intersection after the traffic light has switched

to red, a catastrophe may occur. In this example, an upper bound for the accuracy

interval is given by the duration of the yellow phase of the traffic light.

The set of all temporally accurate real-time images of the controlled object is called

the real-time database. The real-time database must be updated whenever an RT entity

changes its value. These updates can be performed periodically, triggered by the

progression of the real-time clock by a fixed period (time-triggered (TT) observation),

or immediately after a change of state, which constitutes an event, occurs in the RT

entity (event-triggered (ET) observation). A more detailed analysis of event-triggered

and time-triggered observations will be presented in Chapter 5.

Signal Conditioning: A physical sensor, like a thermocouple, produces a raw

data element (e.g., a voltage). Often, a sequence of raw data elements is collected and

an averaging algorithm is applied to reduce the measurement error. In the next step

the raw data must be calibrated and transformed to standard measurement units. The

term signal conditioning is used to refer to all the processing steps that are necessary

to obtain meaningful measured data of an RT entity from the raw sensor data. After

signal conditioning, the measured data must be checked for plausibility and related to

other measured data to detect a possible fault of the sensor. A data element that is

judged to be a correct RT image of the corresponding RT entity is called an agreed

data element.

Alarm Monitoring: An important function of a real-time computer system is the

continuous monitoring of the RT entities to detect abnormal process behaviors. For

example, the rupture of a pipe in a chemical plant will cause many RT entities

(diverse pressures, temperatures, liquid levels) to deviate from their normal operating

ranges, and to cross some preset alarm limits, thereby generating a set of correlated

alarms, which is called an alarm shower. The computer system must detect and
display these alarms and must assist the operator in identifying a primary event

which was the initial cause of these alarms. For this purpose, alarms that are

observed must be logged in a special alarm log with the exact time the alarm

occurred. The exact time order of the alarms is helpful in eliminating the secondary

alarms, i.e., all alarms that are consequent to the primary event. In complex

industrial plants, sophisticated knowledge-based systems are used to assist the
operator in the alarm analysis. The predictable behavior of the computer system

CHAPTER 1 THE REAL-TIME ENVIRONMENT 5

during peak-load alarm situations is of major importance in many application

scenarios.

A situation that occurs infrequently but is of utmost concern when it does occur is
called a rare-event situation. The validation of the rare-event performance of a real-

time computer system is a challenging task.

Example: The sole purpose of a nuclear power plant monitoring and shutdown
system is reliable performance in a peak-load alarm situation (rare event). Hopefully,

this rare event will never occur.

1.2.2 Direct Digital Control

Many real-time computer systems must calculate the set points for the actuators and

control the controlled object directly (direct digital control–DDC), i.e., without any

underlying conventional control system.

Control applications are highly regular, consisting of an (infinite) sequence of control

periods, each one starting with sampling of the RT entities, followed by the

execution of the control algorithm to calculate a new set point, and subsequently by

the output of the set point to the actuator. The design of a proper control algorithm

that achieves the desired control objective, and compensates for the random

disturbances that perturb the controlled object, is the topic of the field of control

engineering. In the next section on temporal requirements, some basic notions in

control engineering will be introduced.

1.2.3 Man-Machine Interaction

A real-time computer system must inform the operator of the current state of the

controlled object, and must assist the operator in controlling the machine or plant

object. This is accomplished via the man-machine interface, a critical subsystem of

major importance. Many catastrophic computer-related accidents in safety-critical real-

time systems have been traced to mistakes made at the man-machine interface

[Lev95].

Most process-control applications contain, as part of the man-machine interface, an

extensive data logging and data reporting subsystem that is designed according to the

demands of the particular industry. For example, in some countries, the

pharmaceutical industry is required by law to record and store all relevant process

parameters of every production batch in an archival storage so that the process

conditions prevailing at the time of a production run can be reexamined in case a

defective product is identified on the market at a later time.

Man-machine interfacing has become such an important issue in the design of

computer-based systems that a number of courses dealing with this topic have been

developed. In the context of this book, we will introduce an abstract man-machine

interface in Section 4.3.1, but we will not cover its design in detail. The interested

reader is referred to standard textbooks, such as the books by Ebert [Ebe94] or by Hix

and Hartson [Hix93], on man-machine interfacing.

6 CHAPTER 1 THE REAL-TIME ENVIRONMENT

1.3 TEMPORAL REQUIREMENTS

1.3 .1

The most stringent temporal demands for real-time systems have their origin in the

requirements of the control loops, e.g., in the control of a fast mechanical process

such as an automotive engine. The temporal requirements at the man-machine

interface are, in comparison, less stringent because the human perception delay, in

the range of 50-100 msec, is orders of magnitudes larger than the latency

requirements of fast control loops.

Where Do Temporal Requirements Come From?

Figure 1.3: A simple control loop.

A Simple Control Loop: Consider the simple control loop depicted in Figure

1.3 consisting of a vessel with a liquid, a heat exchanger connected to a steam pipe,

and a controlling computer system. The objective of the computer system is to

control the valve (control variable) determining the flow of steam through the heat

exchanger so that the temperature of the liquid in the vessel remains within a small

range around the set point selected by the operator.

The focus of the following discussion is on the temporal properties of this simple

control loop consisting of a controlled object and a controlling computer system.

Figure 1.4: Delay and rise time of the step response.

The Controlled Object: Assume that the system is in equilibrium. Whenever

the steam flow is increased by a step function, the temperature of the liquid in the

CHAPTER 1 THE REAL-TIME ENVIRONMENT 7

vessel will change according to Figure 1.4 until a new equilibrium is reached. This

response function of the temperature depends on the amount of liquid in the vessel

and the flow of steam through the heat exchanger, i.e., on the dynamics of the

controlled object. (In the following section, we will use d to denote a duration and t,

a point in time).

There are two important temporal parameters characterizing this elementary step

response function, the object delay dobject after which the measured variable

temperature begins to rise (caused by the initial inertia of the process, called the

process lag) and the rise time drise of the temperature until the new equilibrium state

has been reached. To determine the object delay dobject and the rise time drise from a

given experimentally recorded shape of the step-response function, one finds the two

points in time where the response function has reached 10% and 90% of the difference

between the two stationary equilibrium values. These two points are connected by a

straight line (Figure 1.4). The significant points in time that characterize the object

delay dobject and the rise time drise of the step response function are constructed by

finding the intersection of this straight line with the two horizontal lines that extend

the two liquid temperatures that correspond to the stable states before and after the

application of the step function.

Controlling Computer System: The controlling computer system must

sample the temperature of the vessel periodically to detect any deviation between the

intended value and the actual value of the controlled variable. The constant duration

between two sample points is called the sampling period dsample and the reciprocal

1/dsample is the sampling frequency, f sample. A rule of thumb is that, in a digital

system which is expected to behave like a quasi-continuous system, the sampling

period should be less than one-tenth of the rise time drise of the step response function

of the controlled object, i.e. dsample<(drise/10). The computer compares the measured

temperature to the temperature set point selected by the operator and calculates the

error term. This error term forms the basis for the calculation of a new value of the

control variable by a control algorithm. A given time interval after each sampling

point, called the computer delay dcomputer, the controlling computer will output this

new value of the control variable to the control valve, thus closing the control loop.

The delay dcomputer should be smaller than the sampling period dsample.

The difference between the maximum and the minimum values of the delay is called

the jitter of the delay, ∆dcomputer. This jitter is a sensitive parameter for the quality of

control, as will be discussed Section 1.3.2.

The dead time of the open control loop is the time interval between the observation

of the RT entity and the start of a reaction of the controlled object due to a computer

action based on this observation. The dead time is the sum of the controlled object

delay dobject, which is in the sphere of control of the controlled object and is thus

determined by the controlled object's dynamics, and the computer delay dcomputer,

which is determined by the computer implementation. To reduce the dead time in a

control loop and to improve the stability of the control loop, these delays should be

as small as possible.

8 CHAPTER 1 THE REAL-TIME ENVIRONMENT

Figure 1.5: Delay and delay jitter.

The computer delay dcomputer is defined by the time interval between the sampling

point, i.e., the observation of the controlled object, and the use of this information

(see Figure 1.5), i.e., the output of the corresponding actuator signal to the controlled

object. Apart from the necessary time for performing the calculations, the computer

delay is determined by the time required for communication.

Table 1.1: Parameters of an elementary control loop.

Parameters of a Control Loop: Table 1.1 summarizes the temporal parameters

that characterize the elementary control loop depicted in Figure 1.3. In the first two

columns we denote the symbol and the name of the parameter. The third column

denotes the sphere of control in which the parameter is located, i.e., what subsystem

determines the value of the parameter. Finally, the fourth column indicates the

relationships between these temporal parameters.

Figure 1.6: The effect of jitter on the measured variable T.

CHAPTER 1 THE REAL-TIME ENVIRONMENT 9

1.3.2 Minimal Latency Jitter

The data items in control applications are state-based, i.e., they contain images of the

RT entities. The computational actions in control applications are mostly time-

triggered, e.g., the control signal for obtaining a sample is derived from the

progression of time within the computer system. This control signal is thus in the

sphere of control of the computer system. It is known in advance when the next

control action must take place. Many control algorithms are based on the assumption

that the delay jitter ∆dcomputer is very small compared to the delay dcomputer, i.e., the

delay is close to constant. This assumption is made because control algorithms can

be designed to compensate a known constant delay. Delay jitter brings an additional

uncertainty into the control loop that has an adverse effect on the quality of control.

The jitter ∆d can be seen as an uncertainty about the instant the RT-entity was

observed. This jitter can be interpreted as causing an additional value error ∆T of the

measured variable temperature T as shown in Figure 1.6. Therefore, the delay jitter

should always be a small fraction of the delay, i.e., if a delay of 1 msec is demanded

then the delay jitter should be in the range of a few µsec [SAE95].

1.3.3 Minimal Error-Detection Latency

Hard real-time applications are, by definition, safety-critical. It is therefore important

that any error within the control system, e.g., the loss or corruption of a message or

the failure of a node, is detected within a short time with a very high probability. The

required error-detection latency must be in the same order of magnitude as the

sampling period of the fastest critical control loop. It is then possible to perform

some corrective action, or to bring the system into a safe state, before the

consequences of an error can cause any severe system failure. Jitterless systems will

always have a shorter error-detection latency than systems that allow for jitter, since

in a jitterless system, a failure can be detected as soon as the expected event fails to

occur [Lin96].

1.4 DEPENDABILITY REQUIREMENTS

The notion of dependability covers the metafunctional attributes of a computer

system that relate to the quality of service a system delivers to its users during an

extended interval of time. (A user could be a human or another technical system.) The

following measures of dependability attributes are of importance [Lap92]:

1.4.1 Reliability

The Reliability R(t) of a system is the probability that a system will provide the

specified service until time t, given that the system was operational at t = to. If a

system has a constant failure rate of λ failures/hour, then the reliability at time t is

given by

R(t) = exp(– λ(t–to)),

10 CHAPTER 1 THE REAL-TIME ENVIRONMENT

where t -to is given in hours. The inverse of the failure rate 1/ λ = MTTF is called the

Mean-Time-To-Failure MTTF (in hours). If the failure rate of a system is required to

be in the order of 10-9 failures/h or lower, then we speak of a system with an

ultrahigh reliability requirement.

1.4.2 Safety

Safety is reliability regarding critical failure modes. A critical failure mode is said to

be malign, in contrast with a noncritical failure, which is benign. In a malign failure

mode, the cost of a failure can be orders of magnitude higher than the utility of the

system during normal operation. Examples of malign failures are: an airplane crash

due to a failure in the flight-control system, and an automobile accident due to a

failure of a computer-controlled intelligent brake in the automobile. Safety-critical

(hard) real-time systems must have a failure rate with regard to critical failure modes

that conforms to the ultrahigh reliability requirement. Consider the example of a

computer-controlled brake in an automobile. The failure rate of a computer-caused

critical brake failure must be lower than the failure rate of a conventional braking

system. Under the assumption that a car is operated about one hour per day on the

average, one safety-critical failure per million cars per year translates into a failure

rate in the order of 10-9 failures/h. Similar low failure rates are required in flight-

control systems, train-signaling systems, and nuclear power plant monitoring

systems.

Certification: In many cases the design of a safety-critical real-time system must

be approved by an independent certification agency. The certification process can be

simplified if the certification agency can be convinced that:

(i) The subsystems that are critical for the safe operation of the system are
protected by stable interfaces that eliminate the possibility of error propagation

from the rest of the system into these safety-critical subsystems.

All scenarios that are covered by the given load- and fault-hypothesis can be

handled according to the specification without reference to probabilistic

arguments. This makes a resource adequate design necessary.

(iii) The architecture supports a constructive certification process where the
certification of subsystems can be done independently of each other, e.g., the

proof that a communication subsystem meets all deadlines is independent of the

proof of the performance of a node. This requires that subsystems have a high

degree of autonomy and clairvoyance (knowledge about the future).

[Joh92] specifies the required properties for a system that is "designed for validation":

(i) A complete and accurate reliability model can be constructed. All parameters of
the model that cannot be deduced analytically must be measurable in feasible

time under test.

The reliability model does not include state transitions representing design

faults; analytical arguments must be presented to show that design faults will

not cause system failure.

(ii)

(ii)

CHAPTER 1 THE REAL-TIME ENVIRONMENT 11

(iii) Design tradeoffs are made in favor of designs that minimize the number of
parameters that must be measured and simplify the analytical argument.

1.4.3 Maintainabi l i ty

Maintainability is a measure of the time required to repair a system after the

occurrence of a benign failure. Maintainability is measured by the probability M(d)

that the system is restored within a time interval d after the failure. In keeping with

the reliability formalism, a constant repair rate µ (repairs per hour) and a Mean-Time

to Repair (MTTR) is introduced to define a quantitative maintainability measure.

There is a fundamental conflict between reliability and maintainability. A

maintainable design requires the partitioning of a system into a set of smallest

replaceable units (SRUs) connected by serviceable interfaces that can be easily

disconnected and reconnected to replace a faulty SRU in case of a failure. A

serviceable interface, e.g., a plug connection, has a significantly higher physical

failure rate than a non-serviceable interface, e.g., a solder connection. Furthermore, a

serviceable interface is more expensive to produce. These conflicts between reliability

and maintainability are the reasons why many mass-produced consumer products are

designed for reliability at the expense of maintainability.

1.4.4 Avai labi l i ty

Availability is a measure of the delivery of correct service with respect to the

alternation of correct and incorrect service, and is measured by the fraction of time

that the system is ready to provide the service. Consider the example of a telephone

switching system. Whenever a user picks up the phone, the system should be ready

to provide the telephone service with a very high probability. A telephone exchange

is allowed to be out of service for only a few minutes per year.

In systems with constant failure and repair rates, the reliability (MTTF),

maintainability (MTTR), and availability (A) measures are related by

A = MTTF/ (MTTF+MTTR).

The sum MTTF+MTTR is sometimes called the Mean Time Between Failures

(MTBF). Figure 1.7 shows the relationship between MTTF, MTTR, and MTBF.

System State:

Figure 1.7: Relationship between MTTF, MTBF and MTTR.

12 CHAPTER 1 THE REAL-TIME ENVIRONMENT

A high availability can be achieved either by a long MTTF or by a short MTTR. The

designer has thus some freedom in the selection of her/his approach to the

construction of a high-availability system.

1.4 .5 Security

A fifth important attribute of dependability– the security attribute –is concerned with

the ability of a system to prevent unauthorized access to information or services.

There are difficulties in defining a quantitative security measure, e.g., the

specification of a standard burglar that takes a certain time to intrude a system.

Traditionally, security issues have been associated with large databases, where the

concerns are confidentiality, privacy, and authenticity of information. During the last

few years, security issues have also become important in real-time systems, e.g., a

cryptographic theft-avoidance system that locks the ignition of a car if the user

cannot present the specified access code.

1.5 CLASSIFICATION OF REAL-TIME SYSTEMS

In this section we classify real-time systems from different perspectives. The first

two classifications, hard real-time versus soft real-time (on-line), and fail-safe versus

fail-operational, depend on the characteristics of the application, i.e., on factors

outside the computer system. The second three classifications, guaranteed-timeliness

versus best-effort, resource-adequate versus resource-inadequate, and event-triggered

versus time-triggered, depend on the design and implementation, i.e., on factors

inside the computer system.

1.5.1 Hard Real-Time System versus Soft Real-Time System

The design of a hard real-time system, which must produce the results at the correct

instant, is fundamentally different from the design of a soft-real time or an on-line

system, such as a transaction processing system. In this section we will elaborate on

these differences. Table 1.2 compares the characteristics of hard real-time systems

versus soft real-time systems.

Table 1.2: Hard real-time versus soft real-time systems.

CHAPTER 1 THE REAL-TIME ENVIRONMENT 13

Response Time: The demanding response time requirements of hard real-time

applications, often in the order of milliseconds or less, preclude direct human

intervention during normal operation and in critical situations. A hard real-time

system must be highly autonomous to maintain safe operation of the process. In

contrast, the response time requirements of soft real-time and on-line systems are

often in the order of seconds. Furthermore, if a deadline is missed in a soft real-time

system, no catastrophe can result.

Peak-load Performance: In a hard real-time system, the peak-load scenario must

be well-defined. It must be guaranteed by design that the computer system meets the

specified deadlines in all situations, since the utility of many hard real-time

applications depends on their predictable performance during rare event scenarios

leading to a peak load. This is in contrast to the situation in a soft-real time system,

where the average performance is important, and a degraded operation in a rarely

occurring peak load case is tolerated for economic reasons.

Control of Pace: A hard real-time computer system must remain synchronous

with the state of the environment (the controlled object and the human operator) in

all operational scenarios. It is thus paced by the state changes occurring in the

environment. This is in contrast to an on-line system, which can exercise some

control over the environment in case it cannot process the offered load. Consider the

case of a transaction processing system, such as an airline reservation system. If the

computer cannot keep up with the demands of the operators, it just extends the

response time and forces the operators to slow down.

Safety: The safety criticality of many real-time applications has a number of

consequences for the system designer. In particular, error detection must be

autonomous so that the system can initiate appropriate recovery actions within the

time intervals dictated by the application.

Size of Data Files: Real-time systems have small data files, which constitute the

real-time database that is composed of the temporally accurate images of the RT-

entities. The key concern in hard real-time systems is on the short-term temporal

accuracy of the real-time database that is invalidated due to the flow of real-time. In

contrast, in on-line transaction processing systems, the maintenance of the long-term

integrity of large data files is the key issue.

Redundancy Type: After an error has been detected in an on-line system, the

computation is rolled back to a previously established checkpoint to initiate a

recovery action. In hard real-time systems, roll-back/recovery is of limited utility for

the following reasons:

(i) It is difficult to guarantee the deadline after the occurrence of an error, since the
roll-back/recovery action can take an unpredictable amount of time.

(ii) An irrevocable action (see Section 5.5.1) which has been effected on the
environment cannot be undone.

(iii) The temporal accuracy of the checkpoint data is invalidated by the time
difference between the checkpoint time and the instant now.

14 CHAPTER 1 THE REAL-TIME ENVIRONMENT

The topic of data integrity is discussed at length in Section 5.4 while the issues of

error detection and types of redundancy are dealt with in Chapter 6.

1.5.2 Fail-safe versus Fail-Operational

For some hard real-time systems one or more safe states which can be reached in case

of a system failure, can be identified. Consider the example of a railway signaling

system. In case a failure is detected, it is possible to stop all the trains and to set all

the signals to red to avoid a catastrophe. If such a safe state can be identified and

quickly reached upon the occurrence of a failure, then we call the system fail-safe.

Fail-safeness is a characteristic of the controlled object, not the computer system. In

fail-safe applications the computer system must have a high error-detection coverage,

i.e., the probability that an error is detected, provided it has occurred, must be close

to one.

In many real-time computer systems a special external device, a watchdog, is

provided to monitor the operation of the computer system. The computer system

must send a periodic life-sign (e.g., a digital output of predefined form) to the

watchdog. If this life-sign fails to arrive at the watchdog within the specified time

interval, the watchdog assumes that the computer system has failed and forces the

controlled object into a safe state. In such a system, timeliness is needed only to

achieve high availability, but is not needed to maintain safety since the watchdog

forces the controlled object into a safe state in case of a timing violation.

There are, however, applications where a safe state cannot be identified, e.g., a flight

control system aboard an airplane. In such an application the computer system must

provide a minimal level of service to avoid a catastrophe even in the case of a failure.

This is why these applications are called fail-operational.

1.5.3 Guaranteed-Response versus Best-Effort

If we start out with a specified fault- and load-hypothesis and deliver a design that
makes it possible to reason about the adequacy of the design without reference to

probabilistic arguments, then, even in the case of a peak load and fault scenario, we

can speak of a system with a guaranteed response. The probability of failure of a

perfect system with guaranteed response is reduced to the probability that the

assumptions about the peak load and the number and types of faults hold in reality

(see Section 4.1.1 on assumption coverage). Guaranteed response systems require

careful planning and extensive analysis during the design phase.

If such an analytic response guarantee cannot be given, we speak of a best-effort

design. Best-effort systems do not require a rigorous specification of the load- and

fault-hypothesis. The design proceeds according to the principle "best possible effort

taken" and the sufficiency of the design is established during the test and integration

phases. It is very difficult to establish that a best-effort design operates correctly in

rare-event scenarios. At present, many non safety-critical real-time systems are

designed according to the best-effort paradigm.

CHAPTER 1 THE REAL-TIME ENVIRONMENT 15

1.5.4 Resource-Adequate versus Resource-Inadequate

Guaranteed response systems are based on the principle of resource adequacy, i.e.,

there are enough computing resources available to handle the specified peak load and

the fault scenario [Law92]. Many non safety-critical real-time system designs are

based on the principle of resource inadequacy. It is assumed that the provision of

sufficient resources to handle every possible situation is not economically viable, and

that a dynamic resource allocation strategy based on resource sharing and probabilistic

arguments about the expected load and fault scenarios is acceptable.

It is expected that, in the future, there will be a paradigm shift to resource-adequate

designs in many applications. The use of computers in important volume-based

applications, e.g., in cars, will raise both the public awareness, as well as concerns

about computer-related incidents, and will force the designer to provide convincing

arguments that the design will function properly under all stated conditions. Hard

real-time systems must be designed according to the guaranteed response paradigm

that requires the availability of adequate resources.

1.5.5 Event-Triggered versus Time-Triggered

The flow of real time can be modeled by a directed time line that extends from the
past into the future. Any occurrence that happens at a cut of this time line is called

an event. Information that describes an event (see also Section 5.2.4 on event

observation) is called event information. The present point in time, now, is a very

special event that separates the past from the future (the presented model of time is

based on Newtonian physics and disregards relativistic effects). An interval on the

time line is defined by two events, the start event and the terminating event. The

duration of the interval is the time of the terminating event minus the time of the

start event. Any property of an RT entity or an object that remains valid during a

finite duration, is called a state attribute, the corresponding information state

information. A change of state is thus an event. An observation is an event that

records the state of an RT entity at a particular instant, the point of observation. A

digital clock partitions the time line into a sequence of equally-spaced durations,

called the granules of the clock which are bounded by special periodic events, the

ticks of the clock.

A trigger is an event that causes the start of some action, e.g., the execution of a task

or the transmission of a message. Depending on the triggering mechanisms for the

start of communication and processing activities in each node of a computer system,

two distinctly different approaches to the design of real-time computer applications

can be identified [Kop93b, Tis95]. In the event-triggered (ET) approach, all

communication and processing activities are initiated whenever a significant change

of state, i.e., an event other than the regular event of a clock tick, is noted. In the

time-triggered (TT) approach, all communication and processing activities are

initiated at predetermined points in time.

16 CHAPTER 1 THE REAL-TIME ENVIRONMENT

In an ET system, the signaling of significant events is realized by the well-known

interrupt mechanism, which brings the occurrence of a significant event to the

attention of the CPU. ET systems require a dynamic scheduling strategy to activate

the appropriate software task that services the event.

In a time-triggered (TT) system, all activities are initiated by the progression of time.

There is only one interrupt in each node of a distributed TT system, the periodic

clock interrupt, which partitions the continuum of time into the sequence of equally

spaced granules. In a distributed TT real-time system, it is assumed that the clocks of

all nodes are synchronized to form a global notion of time, and that every observation

of the controlled object is timestamped with this synchronized time. The granularity

of the global time must be chosen such that the time order of any two observations

made anywhere in a distributed TT system can be established from their time-stamps

[Kop92]. The topics of global time and clock synchronization will be discussed at

length in Chapter 3.

1.6 THE REAL-TIME SYSTEMS MARKET

In a market economy, the cost/performance relation is a decisive parameter for the

market success of any product. There are only a few scenarios where cost arguments

are not the major concern. The total life-cycle cost of a product can be broken down

into three rough categories: development cost, production cost, and maintenance cost.
Depending on the product type, the distribution of the total life-cycle cost over these

three cost categories can vary significantly. We will examine this life-cycle cost

distribution by looking at two important examples of real-time systems, embedded

systems and plant-automation systems.

1.6.1 Embedded Real-Time Systems

The ever decreasing price/performance ratio of microcontrollers makes it

economically attractive to replace the conventional mechanical or electronic control

system within many products by an embedded real-time computer system. There are
numerous examples of products with embedded computer systems: engine controllers

in cars, heart pacemakers, FAX machines, cellular phones, computer printers,

television sets, washing machines, even some electric razors contain a

microcontroller with some thousand instructions of software code [Ran94]. Because

the external interfaces of the product, and in particular, the man-machine interface,

often remain unchanged relative to the previous product generation, it is often not

visible from the outside that a real-time computer system is controlling the product

behavior.

Characteristics: An embedded real-time computer system is always part of a well-

specified larger system, which we call an intelligent product. An intelligent product

consists of a mechanical subsystem, the controlling embedded computer, and, most

often, a man-machine interface. The ultimate success of any intelligent product

CHAPTER 1 THE REAL-TIME ENVIRONMENT 17

depends on the relevance and quality of service it can provide to its users. A focus on
the genuine user needs is thus of utmost importance.

Embedded systems have a number of distinctive characteristics that influence the

system development process:

(i) Mass Production: embedded systems are designed for a mass market and
consequently for mass production in highly automated assembly plants. This

implies that the production cost of a single unit must be as low as possible,
i.e., efficient memory and processor utilization are of concern.

Static Structure: the computer system is embedded in an intelligent product of

given functionality and rigid structure. The known a priori static environment

can be analyzed at design time to simplify the software, to increase the

robustness, and to improve the efficiency of the embedded computer system. In

an embedded system there is little need for flexible dynamic software

mechanisms that increase the resource requirements, reduce the error-detection

coverage, and lead to unnecessary complexity of the implementation.

(iii) Man-Machine Interface: if an embedded system has a man-machine interface, it
must be specifically designed for the stated purpose and must be easy to operate.

Ideally, the use of the intelligent product should be self-explanatory, and not

require any training or reference to an operating manual.

(iv) Minimization of the Mechanical Subsystem: to reduce the manufacturing cost
and to increase the reliability of the intelligent product, the complexity of the

mechanical subsystem is minimized.

Functionality Determined by Software in Read-only Memory: the functionality

of an intelligent product is determined by the integrated software that resides in

read-only memory. Because there is hardly any possibility to modify the

software after its release, the quality standards for this software are high.

(vi) Maintenance Strategy: many intelligent products are designed to be non
maintainable, because the partitioning of the product into replaceable units is

too expensive. If, however, a product is designed to be maintained in the field,

the provision of an excellent diagnostic interface and a self-evident maintenance

strategy is of importance.

(vii) Ability to communicate: although most intelligent products start out as stand-
alone units, many intelligent products are required to interconnect with some

larger system at a later stage. The protocol controlling the data transfer should

be simple and robust. An optimization of the transmission speed is seldom an

issue.

By far, the largest fraction of the life-cycle cost of an intelligent product is in the

production, i.e., in the hardware, whereas the development cost and software cost are

only a small part, sometimes less than 5 % of the life-cycle cost. The known a priori

static configuration of the intelligent product can be used to reduce the resource

requirements, and thus the production cost, and also to increase the robustness of the

embedded computer system. Maintenance cost can become significant, particularly if

(ii)

(v)

18 CHAPTER 1 THE REAL-TIME ENVIRONMENT

an undetected design fault (software fault) requires a recall of the product, and the

replacement of a complete production series.

Example: In [Neu96] we find the following laconic one-liner (see also Problem

1.19):

General Motors recalls almost 300 K cars for engine software flaw.

The Four Phases: During the short history of embedded real-time systems, a

characteristic pattern has emerged for the deployment of computer technology within

a product family [Bou95]. In the first phase, an ad hoc stand-alone computer

implementation on a microcomputer without an operating system realizes the given

function of the conventional control system. The software is developed by engineers

who understand the application and have little training in computer technology. To

be cost competitive with the conventional control system, this first implementation

tries to minimize resource requirements (e.g., memory) at the expense of software

structure. In the second phase, the functionality of the product is augmented by

adding software functions to improve the utility of the intelligent product. The

increasing software complexity leads to reliability problems and forces the system

designer to step back and to introduce a software architecture and an operating system

in the third phase. This third phase requires a fundamental redesign of the software,

which produces additional development cost without any significant increase in

visible functions. It is thus a critical phase for the organization that is developing a

product. Finally, in the fourth phase, the intelligent product is seen as part of a larger

system that needs to communicate with its environment. Communication interfaces

are first developed within a company, and then standardized across an industrial sector.

This standardization makes it possible to define standard subsystems that can be

implemented cost-effectively by application-specific VLSI solutions with large

production numbers, for the entire industrial sector.

Different industries have started this transition process from conventional technology

to computer technology, at different times. Therefore, at present, some industries are

already further along in this transition than others.

Future Trends: During the last few years, the variety and number of embedded

computer applications have grown to the point that, now, this segment is by far the

most important one in the real-time systems market. The embedded systems market

is driven by the continuing improvements in the cost/performance ratio of the

semiconductor industry that makes computer-based control systems cost-competitive

relative to their mechanical, hydraulic, and electronic counterparts. Among the key

mass markets are the fields of consumer electronics and automotive electronics. The

automotive electronics market is of particular interest, because of stringent timing,

dependability, and cost requirements that act as "technology catalysts".

After a conservative approach to computer control during the last ten years, a number

of automotive manufacturers now view the proper exploitation of computer

technology as a key competitive element in the never-ending quest for increased

vehicle performance and reduced manufacturing cost. While some years ago, the

computer applications on board a car focused on non-critical body electronics or

CHAPTER 1 THE REAL-TIME ENVIRONMENT 19

comfort functions, there is now a substantial growth in the computer control of core

vehicle functions, e.g., engine control, brake control, transmission control, and

suspension control. In the not-too-distant future we will observe an integration of

many of these functions with the goal of increasing the vehicle stability in critical

driving maneuvers. Obviously, an error in any of these core vehicle functions has

severe safety implications.

At present the topic of computer safety in cars is approached at two levels. At the

basic level a mechanical system provides the proven safety level that is considered

sufficient to operate the car. The computer system provides optimized performance on

top of the basic mechanical system. In case the computer system fails cleanly, the

mechanical system takes over. Consider, for example, an Antilock Braking System

(ABS). If the computer fails, the conventional mechanical brake system is still

operational. Soon, this approach to safety may reach its limits for two reasons:

(i) If the computer controlled system is further improved, the magnitude of the
difference between the performance of the computer controlled system and the

performance of the basic mechanical system is further increased. A driver who is

used to the high performance of the computer controlled system might consider

the fallback to the inferior performance of the mechanical system a safety risk.

(ii) The improved price/performance of the microelectronic devices will make the
implementation of fault-tolerant computer systems cheaper than the

implementation of mixed computer/mechanical systems. Thus, there will be an

economical pressure to eliminate the redundant mechanical system and to replace

it with a computer system using active redundancy.

The automotive industry operates in a highly competitive worldwide market under an

extreme economical pressure. Although the design of a new automotive model is a

major effort requiring the cooperation of thousands of engineers over a period of three

to four years, it is important to realize that more than 95% of the cost of delivering a

car lies in manufacturing and marketing, and only 5 % of the cost is related to

development. The cost-effective and highly dependable computer solutions that are

being developed for the automotive market will thus be adopted in many other real-

time system applications. It is expected that the automotive market will be the

driving force for the real-time systems market.

The embedded system market is expected to grow significantly during the next ten

years. Compared to other information technology markets, this market will offer–

according to a recent study [Ran94]–the best employment opportunities for the

computer engineers of the future.

1.6.2 Plant Automation Systems

Characteristics: Historically, industrial plant automation was the first field for the

application of real-time digital computer control. This is understandable since the

benefits that can be gained by the computerization of a sizable plant are much larger

than the cost of even an expensive process control computer of the late 1960's. In the

20 CHAPTER 1 THE REAL-TIME ENVIRONMENT

early days, industrial plants were controlled by human operators who were placed in

close vicinity to the process. With the refinement of industrial plant instrumentation

and the availability of remote automatic controllers, plant monitoring and command

facilities were concentrated into a central control room, thus reducing the number of

operators required to run the plant. In the late 1960's, the next logical step was the

introduction of central process control computers to monitor the plant and assist the

operator in her/his routine functions, e.g., data logging and operator guidance. In the

early days, the computer was considered an "add-on" facility that was not fully

trusted. It was the duty of the operator to judge whether a set point calculated by a

computer made sense and could be applied to the process (open-loop control). With

the improvement of the process models and the growth of the reliability of the

computer, control functions have been increasingly allocated to the computer and

gradually, the operator has been taken out of the control loop (closed-loop control).

Sophisticated control techniques, which have response time requirements beyond

human capabilities, have been implemented.

A plant automation system is normally unique. There is an extensive amount of

engineering and software effort required to adapt the computer system to the physical

layout, the operating strategy, the rules and regulations, and the reporting system of a

particular plant. To reduce these engineering and software efforts, many process

control companies have developed a set of modular building blocks, which can be

configured individually to meet the requirements of a customer. Compared to the

development cost, the production cost (hardware cost) is of minor importance.

Maintenance cost can be an issue if a maintenance technician must be on-site for 24

hours in order to minimize the downtime of a plant.

Future Trends: The market of industrial plant automation systems is limited by

the number of plants that are newly constructed or are refurbished to install a

computer control system. During the last twenty years, many plants have already

been automated. This investment must pay off before a new generation of computer

and control equipment is installed.

Furthermore, the installation of a new generation of control equipment in a

production plant causes disruption in the operation of the plant with a costly loss of

production that must be justified economically. This is difficult if the plant's

efficiency is already high, and the margin for further improvement by refined

computer control is limited.

The size of the plant automation market is too small to support the mass production

of special application-specific components. It is thus expected that the special VLSI

components that are developed for other application domains, such as automotive

electronics, will be taken up by this market to reduce the system cost. Examples of

such components are sensors, actuators, real-time local area networks and processing

nodes. Already several process-control companies have announced a new generation of

process-control equipment that takes advantage the of low-priced mass produced

components that have been developed for the automotive market, such as the chips

developed for the Control Area Network (CAN–see Section 7.5.3).

CHAPTER 1 THE REAL-TIME ENVIRONMENT 21

1. 6. 3 Multimedia Systems

Characteristics: The multimedia market is an emerging mass market for specially

designed soft real-time systems. Although the deadlines for many multimedia tasks,

such as the synchronization of audio and video streams, are firm, they are not hard

deadlines. An occasional failure to meet a deadline results in a degradation of the

quality of service, but will not cause a catastrophe. The processing power required to

transport and render a continuous video stream is very large and difficult to bound,

because it is often possible to improve a good picture even further. The resource

allocation strategy in multimedia applications is thus quite different from that of hard

real-time applications; it is not determined by the given application requirements, but

by the amount of available resources. A fraction of the given computational resources

(processing power, memory, bandwidth) is allocated to a user domain. Quality of

service considerations at the end user determine the detailed resource allocation

strategy. For example, if a user reduces the size of a window and enlarges the size of

another window on his multimedia terminal, then the system can reduce the

bandwidth and the processing allocated to the first window to free the resources for

the other window that has been enlarged. Other users of the system should not be

affected by this local reallocation of resources.

Future Trends: The marriage of the Internet with multimedia personal computers

is expected to lead to many new volume applications. At present many companies

invest heavily into the multimedia market that is expected to become an important

market of the future. The focus of this book is not on multimedia systems, because

these systems belong to the class of soft real-time applications.

1. 7

In this section, three typical examples of real-time systems are introduced and these

will be used throughout the text to explain the evolving concepts. We start with an

example of a very simple system for flow control to demonstrate the need for end-to-

end protocols in process input/output.

1. 7. 1 Controlling the Flow in a Pipe

It is the objective of the simple control system depicted in Figure 1.8 to control the

flow of a liquid in a pipe. A given flow set point determined by a client should be

maintained despite changing environmental conditions. Examples for such changing

conditions are the varying level of the liquid in the vessel or the temperature sensitive

viscosity of the liquid. The computer interacts with the controlled object by setting

the position of the control valve. It then observes the reaction of the controlled object

by reading the flow sensor F to determine whether the desired effect, the intended

change of flow, has been achieved. This is a typical example of the necessary end-to-

end protocol [Sal84] that must be put in place between the computer and the

controlled object (see also Section 7.1.4). In a well-engineered system, the effect of

any control action of the computer must be monitored by one or more independent

EXAMPLES OF REAL-TIME SYSTEMS

22 CHAPTER 1 THE REAL-TIME ENVIRONMENT

sensors. For this purpose, many actuators contain a number of sensors in the same

physical housing. For example, the control valve in Figure 1.8 might contain a

sensor, which measures the mechanical position of the valve in the pipe, and two

limit switches, which indicate the firmly closed and the completely open positions of

the valve. A rule of thumb that is that there are about three to seven sensors for every

actuator.

Figure 1.8: Flow of liquid in a pipe.

The dynamics of the system in Figure 1.8 is essentially determined by the speed of

the control valve. Assume that the control valve takes 10 seconds to open or close

from 0% to 100%, and that the flow sensor F has a precision of 1%. If a sampling

interval of 100 msec is chosen, the maximum change of the valve position within

one sampling interval is 1%, the same as the precision of the flow sensor. Because of

this finite speed of the control valve, an output action taken by the computer at a

given time will lead to an effect in the environment at some later time. The

observation of this effect by the computer will be further delayed by the given latency

of the sensor. All these latencies must either be derived analytically or measured

experimentally, before the temporal control structure for a stable control system can

be designed.

1. 7. 2 Engine Control

The task of an engine controller in an automobile engine is the calculation of the

proper amount of fuel, and the exact moment at which the fuel must be injected into

the combustion chamber of each cylinder. The amount of fuel and the timing depend

on a multitude of parameters: the intentions of the driver, articulated by the position

of the accelerator pedal, the current load on the engine, the temperature of the engine,

the condition of the cylinder, and many more. A modern engine controller is a

complex piece of equipment. Up to 100 concurrently executing software tasks must

cooperate in tight synchronization to achieve the desired goal, a smoothly running

and efficient engine with a minimal output of pollutants.

The up- and downward moving piston in each cylinder of a combustion engine is

connected to a rotating axle, the crankshaft. The intended start point of fuel injection
is relative to the position of the piston in the cylinder, and must be precise within an

accuracy of about 0.1 degree of the measured angular position of the crankshaft. The

precise angular position of the crankshaft is measured by a number of digital sensors

that generate a rising edge of a signal at the instant when the crankshaft passes these

defined positions. Consider an engine that turns with 6000 rpm (revolutions per

minute), i.e., the crankshaft takes 10 msec for a 360 degree rotation. If the required

precision of 0.1 degree is transformed into the time domain, then a temporal accuracy

CHAPTER 1 THE REAL-TIME ENVIRONMENT 23

of 3 µsec is required. The fuel injection is realized by opening a solenoid valve that

controls the fuel flow from a high-pressure reservoir into the cylinder. The latency

between giving an "open" command to the valve and the actual point in time when

the valve opens is in the order of hundreds of µsec, and changes considerably

depending on environmental conditions (e.g., temperature). To be able to compensate

for this latency jitter, a sensor signal indicates the point in time when the valve has

actually opened. The duration between the execution of the output command by the

computer and the start of opening of the valve is measured during every engine cycle.

The measured latency is used to determine when the output command must be

executed during the next cycle so that the intended effect, the start of fuel injection,

happens at the proper point in time.

This example of an engine controller has been chosen because it demonstrates

convincingly the need for extremely precise temporal control. For example, if the

processing of the signal that measures the exact position of the crankshaft in the

engine is delayed by a few µsec, the quality of control of the whole system is

compromised. It can even happen that the engine is mechanically damaged if the

valve is opened at an incorrect moment.

Figure 1.9: An RT transaction.

1.7.3 Rolling Mill

A typical example of a distributed plant automation system is the computer control

of a rolling mill. In this application a slab of steel (or some other material, such as

paper) is rolled to a strip and coiled. The rolling mill of Figure 1.9 has three drives

and some instrumentation to measure the quality of the rolled product. The distributed

computer-control system of this rolling mill consists of seven nodes connected by a

real-time communication system. The most important sequence of actions–we call

this a real-time (RT) transaction –in this application starts with the reading of the

sensor values by the sensor computer. Then, the RT transaction passes through the

model computer that calculates new set points for the three drives, and finally reaches

24 CHAPTER 1 THE REAL-TIME ENVIRONMENT

the control computers to achieve the desired action by readjusting the rolls of the

mill.

The duration of the real-time transaction between the sensor node and the drive nodes

(bold line in Figure 1.9) must be considered by the control algorithms because it is

an important parameter for the quality of control. The shorter the delay of this

transaction, the better the control quality, since this transaction contributes to the

dead time of the critical control loop. The other important term of the dead time is

the time it takes for the strip to travel from the drive to the sensor. A jitter in the

deadtime that is not compensated for will reduce the quality of control significantly.

It is evident from Figure 1.9 that the latency jitter is the sum of the jitter of all

processing and communication actions that form the critical real-time transaction.

Note that the communication pattern among the nodes of this control system is

multicast, not point-to-point. This is typical for most distributed real-time control

systems. Furthermore, the communication between the model node and the drive

nodes has an atomicity requirement. Either all of the drives are changed according to

the output of the model, or none of them is changed. The loss of a message, which

may result in the failure of a drive to readjust to a new position, may cause

mechanical damage to the drive.

POINTS TO REMEMBER

A real-time computer system must react to stimuli from the controlled object (or

the operator) within time intervals dictated by its environment. If a catastrophe

could result in case a firm deadline is missed, the deadline is called hard.

In a hard real-time computer system, it must be guaranteed by design that the

computer system will meet the specified deadlines in all situations because the

utility of many hard real-time applications can depend on predictable performance

during a peak load scenario.

A hard real-time system must maintain synchrony with the state of the

environment (the controlled object and the human operator) in all operational

scenarios. It is thus paced by the state changes occurring in the environment.

Because the state of the controlled object changes as a function of real-time, an

observation is temporally accurate only for a limited time interval.

Real-time systems have only small data files, the real-time database that is

formed by the temporally accurate images of the RT-entities. The key concern is

on the short-term temporal accuracy of the real-time database that is invalidated

by the flow of real-time.

A trigger is an event that causes the start of some action, e.g., the execution of a
task or the transmission of a message.

The real-time database must be updated whenever an RT entity changes its value.

This update can be performed periodically, triggered by the progression of the

real-time clock by a fixed period (time-triggered observation), or immediately

•

•

•

•

•

•

•

CHAPTER 1 THE REAL-TIME ENVIRONMENT 25

after a change of state, an event, occurs in the RT entity (event-triggered
observation).

The most stringent temporal demands for real-time systems have their origin in

the requirements of the control loops.

The temporal behavior of a simple controlled object can be characterized by

process lag and rise time of the step-response function.

The dead time of a control loop is the time interval between the observation of

the RT entity and the start of a reaction of the controlled object as a consequence

of a computer action based on this observation.

Many control algorithms are based on the assumption that the delay jitter is a

very small fraction of the delay since control algorithms are designed to

compensate a known constant delay. Delay jitter brings an additional uncertainty

into the control loop that has an adverse effect on the quality of control.

The term signal conditioning is used to refer to all processing steps that are

needed to get a meaningful RT image of an RT entity from the raw sensor data.

The Reliability R(t) of a system is the probability that a system will provide the
specified service until time t, given that the system was operational at t = to.

If the failure rate of a system is required to be about 10-9 failures/h or lower, then

we are dealing with a system with an ultrahigh reliability requirement.

Safety is reliability regarding critical failure modes. In a malign failure mode, the

cost of a failure can be orders of magnitude higher than the utility of the system

during normal operation.

Maintainability is a measure of the time it takes to repair a system after the last

experienced benign failure, and is measured by the probability M(d) that the

system is restored within a time interval d seconds after the failure.

Availability is a measure of the correct service delivery regarding the alternation

of correct and incorrect service, and is measured by the probability A(t) that the

system is ready to provide the service at time t.

The probability of failure of a perfect system with guaranteed response is reduced

to the probability that the assumptions concerning the peak load and the number

and types of faults are valid in reality.

If we start out from a specified fault- and load-hypothesis and deliver a design

that makes it possible to reason about the adequacy of the design without

reference to probabilistic arguments, then, even in the case of the extreme load

and fault scenarios, we can speak of a system with a guaranteed response.

An embedded real-time computer system is part of a well-specified larger system,

an intelligent product. An intelligent product normally consists of a mechanical

subsystem, the controlling embedded computer, and a man-machine interface.

•

•

•

•

•

•

•

•

•

•

•

•

26 CHAPTER 1 THE REAL-TIME ENVIRONMENT

The static configuration, known a priori, of the intelligent product can be used to
reduce the resource requirements and increase the robustness of the embedded

computer system.

An industrial plant automation system is normally unique. Compared to
development cost, the production cost (hardware cost) of a plant automation

system is less important.

The embedded system market is expected to grow significantly during the next

ten years. Compared with other information technology markets, this market

will offer the best employment opportunities for the computer engineers of the

future.

•

•

BIBLIOGRAPHIC NOTES

In the well-publicized paper "Misconceptions about Real-Time Computing" [Sta88,

p. 14] Stankovic discusses the key requirements and common misconceptions about

real-time computing, and highlights many open research issues. A number of

tutorials on real-time systems have been published in the last few years: Stankovic

and Ramamritham edited two tutorials; "Hard Real-Time Systems" [Stag88] and

"Advances in Real-Time Systems" [Sta92] that contain carefully selected research

papers on the topic of real-time systems. Other recent collections of research papers

are contained in the book "Real-Time Systems, Abstractions, Languages and Design

Methodologies" edited by Kavi [Kav92] and the book "Advances in Real-Time

Systems", edited by Son [Son94]. The tutorial "Advances in Ultradependable

Distributed Systems" [Sur95], edited by Suri, Walter and Hugue, focuses on research

papers relevant to ultra-dependable systems. The textbook by Burns [Bur89] on

"Real-Time Systems and their Programming Languages" gives a good introduction to

real-time systems programming. The Handbook of the Society of Automotive

Engineers [SAE95] contains an excellent description of the requirements of onboard

safety-critical computer systems in vehicles. It provides a benchmark example of a

typical distributed real-time control system in a car. A solution to this benchmark

example has been published in [Kop94].

REVIEW QUESTIONS AND PROBLEMS

1.1

1.2

1.4

1.5

1.6

1.3

What makes a computer system a real-time computer system?

What are typical functions that a real-time computer system must perform?

Where do the temporal requirements come from? What are the parameters that

describe the temporal characteristics of a controlled object?

Give a "rule of thumb" that relates the sampling period in a quasi-continuous

system to the rise time of the step-response function of the controlled object.

What are the effects of delay and delay jitter on the quality of control?

Compare the error-detection latency in systems with and without jitter.

What does signal conditioning mean?

•

CHAPTER 1 THE REAL-TIME ENVIRONMENT 27

Consider an RT entity that changes its value periodically according to

v(t) = A0 sin(2 t/T) where T, the period of the oscillation, is 100 msec.

What is the maximum change of value of this RT entity within a time
interval of 1 msec? (express the result in percentage of the amplitude Ao).

Consider an engine that rotates with 3000 rpm. By how many degrees will

the crankshaft turn within 1 msec?

Give some examples where the predictable rare-event performance determines

the utility of a hard real-time system.

What is a critical failure mode? Give examples.

Consider a fail-safe application. Is it necessary that the computer system

provides guaranteed timeliness to maintain the safety of the application?

What is the level of error-detection coverage required in an ultrahigh

dependability application?

What is the difference between availability and reliability? What is the

relationship between maintainability and reliability?

When is there a simple relation between the MTTF and the failure rate?

Assume you are asked to certify a safety-critical control system. How would

you proceed?

What are the main differences between a soft real-time system and a hard real-

time system?

Why is an end-to-end protocol required at the interface between the computer

system and the controlled object?

What is the fraction development cost/production cost in embedded systems

and in plant automation systems? How does this relation influence the

system design?

Assume that an automotive company produces 2 000 000 electronic engine

controllers of a special type. The following design alternatives are discussed:

(i) Construct the engine control unit as a single SRU with the application

software in Read Only Memory (ROM).The production cost of such a unit is

250 $. In case of an error, the complete unit has to be replaced.

(ii) Construct the engine control unit such that the software is contained in a

ROM that is placed on a socket and can be replaced in case of a software

error. The production cost of the unit without the ROM is 248 $. The cost of

the ROM is 5$.

(iii) Construct the engine control unit as a single SRU where the software is

loaded in a Flash EPROM that can be reloaded. The production cost of such a

unit is 255 $.

The labor cost of repair is assumed to be 50 $ for each vehicle. (It is assumed

to be the same for each one of the three alternatives). Calculate the cost of a
software error for each one of the three alternative designs if 300 000 cars

have to be recalled because of the software error (example in Section 1.6.1).

1.7

1.8

1.9

1.10

1.1 1

1.12

1.13

1.14

1.15

1.16

1.17

1.19

28 CHAPTER 1 THE REAL-TIME ENVIRONMENT

Which one is the lowest cost alternative if only 1 000 cars are affected by a

recall?

Estimate the relation (development cost)/(production cost) in an embedded

application and in a plant automation system.

1.19

Chapter 2

Why a Distributed Solution?

OVERVIEW

From the functional point of view, it makes little difference whether a given

specification is implemented using a centralized architecture or a distributed

architecture. In this chapter, a number of arguments are presented in favor of a

distributed approach for the implementation of a hard real-time system. The chapter

starts with an overview of a distributed real-time system architecture, which consists

of a set of nodes and a communication network that interconnects these nodes. The

interface between the communication network and the host computer within a node is

discussed at length, and the concept of event message and state message is introduced.

The semantics of state messages facilitates the exchange of state information among

the nodes, and enforces a high degree of autonomy of the nodes and the

communication system.

The next sections argue for a distributed architecture as the preferred alternative for the

implementation of a hard real-time system. The first and most important argument is

that of composability. In a composable architecture, system properties follow from

subsystem properties. In such an architecture, a constructive approach to system

building and to system validation is supported. In the context of real-time systems,

composability requires that the communication network interface between the host

computer in a node and the communication network is fully specified, not only in the

value domain, but also in the time domain. Scalability requires that there exist no

limits on the extensibility of a system, and that the complexity of reasoning about

the proper operation of any system function be independent of the system size. It is

shown that the economics of VLSI production favor the distributed approach for

building a scalable large real-time system. Dependability arguments advocate a

distributed approach because such an approach makes it possible to implement well-

defined error-containment regions, and to achieve fault tolerance by replicating nodes.

30 CHAPTER 2 WHY A DISTRIBUTED SOLUTION?

2.1 SYSTEM ARCHITECTURE

2.1.1 Form Follows Function

It is an established architectural principle that the function of an object should

determine its physical form [Vit60,p. 13]. Distributed computer architectures enable

the application of this proven architectural principle to the design of computing

systems. In a distributed system, it is feasible to encapsulate a logical function and

the associated computer hardware into a single unit, a node. The advances in the field

of microelectronics have made it possible to implement nodes of considerable

computational power cost effectively on a single silicon die. Well-designed

distributed systems utilize many instances of the same hardware node type, and can

thus take advantage of the tremendous economy of scale in VLSI mass production.

Viewed from a higher level, a node can be replaced by an understandable abstraction

that captures the essential functional and temporal properties of the node and hides the

irrelevant details of the implementation behind a simple and stable external node
interface. The layout and the placement of these external node interfaces are

significant design activities that determine the structure and the properties of the

system as a whole.

It is a major advantage of such an approach that the extracted abstractions hold also in

the case of failures. Abstractions that cannot be maintained in case of a fault in one

of the subsystems are of limited utility when designing large systems. If there is a

one-to-one mapping between functions and nodes, then, the cause for a malfunction

can be readily diagnosed, and the node that has failed can be pinpointed. Vice versa, it

is possible to foresee what functions will be affected in case of an error in a node. In

a centralized computer system, where such a one-to-one mapping between system

resources (hardware, operating system, etc.) and application functions is not possible,

the problems of fault diagnosis and the analysis of the effects of a subsystem failure

can become formidable.

Figure 2.1: Distributed computer system.

CHAPTER 2 WHY A DISTRIBUTED SOLUTION? 31

2.1.2 Hardware Structure

Figure 1.1 shows that a distributed application can be decomposed into a set of

clusters, the operator cluster, the computational cluster, and the controlled object

cluster. If the computational cluster is implemented as a distributed computer system,

it has the general structure of Figure 2.1. A set of nodes is interconnected by a real-

time communication system.

A node can be partitioned into at least two subsystems, the local communication

controller, and the host computer (Figure 2.2). The set of all the communication

controllers of the nodes within a cluster, along with the physical interconnection

medium, forms the real-time communication system of the cluster. The interface

between the communication controller within a node and the host computer of the

node is called the communication-network interface (CNI). The CNI is located at the

transport level of the OSI reference model [Tan88], and is considered to be the most

important interface of a distributed real-time architecture.

Figure 2.2: Structure of a node.

2.1.3 The Communication-Network Interface

The purpose of the real-time communication system is to transport messages from

the CNI of the sender node to the CNI of the receiver node within a predictable time

interval, with a small latency jitter, and with high reliability. The communication

system must ensure that the contents of the messages are not corrupted. Faults

specified in the fault hypothesis must be handled correctly. From the point of view of

the host computer, the details of the protocol logic and the physical structure of the

communication network are hidden behind the CNI.

Data Semantics: Depending on whether the information contained in a message

relates to the occurrence of an event or to the value of a state, two types of message

processing are distinguished at the CNI of the receiver.

Since every event is significant, the loss of a single event can lead to a loss of

synchronization in state between the sender and the receiver. Messages containing

event information must be queued at the receiver and be removed on reading to ensure

that every event is processed exactly once. The order in the queue should be the

temporal order of event occurrence, and not the often unpredictable order in which the

32 CHAPTER 2 WHY A DISTRIBUTED SOLUTION?

messages are delivered by the communication system, such as the FIFO order of

message arrival.

If the message contains state information, e.g., the current temperature, it is

reasonable to overwrite the old version of a state value by a new version because the

receiver is normally interested in the latest version of the state. State values are not

disposed of on reading because many readers may be interested in the same state

value, e.g., the current value of the particular temperature sensor. In real-time

systems, state semantics is needed much more frequently than event semantics.

Control Strategy: The decision when a message must be sent can reside either

within the sphere of control of the host computer (external control) or within the

sphere of control of the communication system (autonomous control). The most

common temporal control strategy used in computer networks is external control.

The execution of a "send" command in the host computer causes the transfer of a

control signal across the CNI and initiates the transmission of a message by the

communication system. When a message arrives at the receiver, a control signal

(interrupt) from the communication system crosses the CNI and unblocks a "receive"

command in the receiving host computer.

In the case of autonomous control, the communication system decides autonomously

when to send the next message, and when to deliver the message at the CNI of the

receiver. The receiving host is not interrupted when a new message arrives because

this would compromise the autonomy of the receiver. Autonomous control is

normally time-triggered. The communication system contains a transmission

schedule, a table of points in time that determine which message must be transmitted

next. If the control of the communication system is autonomous, no control signals

must cross the CNI. In this case the CNI is used strictly for sharing data.

The Design Space: The sixteen different combinations of data semantics and

control strategies, at the CNI of the sender and at the CNI of the receiver, are listed in

Table 2.1. Some of these combinations make no sense, and this is indicated by a

"no" in the appropriate field. Of these sixteen combinations, the beginning and the

end of the table are of special significance. They represent event messages and state

messages.

Table 2.1: Possible combinations of data semantics and control strategy.

CHAPTER 2 WHY A DISTRIBUTED SOLUTION? 33

Event Message: An event message combines event semantics with external
control. Every arriving event message is queued at the receiver and disposed of on

processing. Event messages require one-to-one synchronization between the sender

and the receiver; otherwise the queue will overflow, or the receiver will be blocked.

Event-message semantics corresponds to the classic message semantics that is used in

most non real-time communication systems, such as transaction-processing systems.

State Message: A state message combines state-value semantics with autonomous

control. State-message semantics is closely related to the semantics of a global

variable with two notable differences; with state message semantics

(i) The communication system guarantees the atomicity of a message write
operation, and

(ii) There is only a single sender (writer) process.

There is no need for one-to-one synchronization between the sender process and the

receiver processes, because the receivers can read a state value many times or not at

all, thereby leading to a looser coupling between the nodes. In a distributed system

based on state messages, the CNI can be implemented as a dual-ported RAM with no

control signals crossing the interface. State-message semantics corresponds naturally

to the requirements of control applications and is thus well-suited for the

implementation of distributed control systems. Recently, operating systems [Po196a,

Rei95] have been developed to support state-message semantics at the level of the

basic interprocess communication primitives.

2.1.4 The Communication System

There are a number of different alternatives available for the design and

implementation of the communication service: a single channel system, such as a

bus or ring, or a multiple channel system, such as a mesh network. Communication

reliability can be increased by message retransmission in case of a failure, or by

always replicating messages so that a loss of a message is immediately masked. The

permanent loss of a complete channel can be tolerated if the communication channels

are replicated.

The communication system is a critical resource of a distributed system, since the

loss of communication results in the loss of all global system services. Therefore,

the reliability of the communication system should be an order of magnitude higher

than the reliability of the individual nodes. The topic of real-time communication

systems is treated in detail in Chapter 7.

2.1.5 Gateways

The purpose of a gateway is to exchange relative views between two interacting

clusters. A gateway node must have either an instrumentation interface and a

communication interface (interface node), or two communication interfaces (two

CNIs), each interfacing to one of the interacting clusters. An interface node is thus a

special type of gateway node. The gateway host must pass the relevant information

34 CHAPTER 2 WHY A DISTRIBUTED SOLUTION?

from the CNI of the sending cluster to the CNI of the receiving cluster. In most

cases, only a small subset of the information of one cluster is relevant to the other

cluster. In general, it cannot be assumed that the structure of the messages and the

representation of the information is identical in both clusters. Thus, the gateway host

must transform the data formats of one cluster to those expected by the other cluster.

In a time-triggered (TT) architecture, a gateway has data-sharing interfaces. There are

no control signals passing through a gateway component, i.e., in a TT architecture a

gateway does not reduce the autonomy of control of the interconnected clusters.

Many large real-time systems are not designed from scratch according to a single

master plan, but evolve gradually over many years, using different generations of

hardware and software technology. Gateways are important for designing interfaces to

such legacy systems with reasonable effort. One CNI can be designed to conform to

the data representation and protocol conventions of the legacy architecture, while the

other CNI can be designed according to the rules of the newly-implemented extension

to this legacy system. The gateway thus encapsulates and hides the internal features

of the legacy system and provides a clean and flexible interface.

2.2 COMPOSABILITY

In many engineering disciplines, large systems are built by integrating a set of well-

specified and tested subsystems. It is important that properties that have been

established at the subsystem level are maintained during system integration. Such a

constructive approach to system design is only possible if the architecture supports
composability.

Figure 2.3: The composability problem.

2.2.1 Definition

An architecture is said to be composable with respect to a specified property if the

system integration will not invalidate this property once the property has been

established at the subsystem level. Examples of such properties are timeliness or

testability. In a composable architecture, the system properties follow from the

subsystem properties.

CHAPTER 2 WHY A DISTRIBUTED SOLUTION? 35

Example: In a car, different engines may be combined with different transmissions

and different braking and suspension systems. The composability of an architecture
guarantees that all these combinations of subsystems will work correctly without a

need for redesign or retesting of any of the already validated subsystems.

In a distributed real-time system, the integration effect is achieved by interactions

among the different nodes. Therefore, the communication system has a central role in

determining the composability of a distributed architecture with respect to the

temporal properties.

2.2.2 Event-Triggered Communication Systems

If a communication system transports event messages (we call such a communication

system event-triggered–ET), the temporal control is external to the communication

system. It is within the sphere of control of the host computers (see Figure 2.2) to

decide when a message must be sent. Consider the case where a number of nodes

decide to send a message to a particular receiving node at the same instant. If the

communication system has dedicated channels between any two nodes, all messages

will arrive simultaneously at the receiver, and overload the receiver. On the other

hand, if the communication system uses a single shared channel that serializes the

traffic, then a conflict for gaining access to this channel is unavoidable. Different

shared-channel ET protocols resolve such an access conflict by different techniques

which include random access techniques (Ethernet), introducing a predefined order of

access (a token protocol), and message priority (Control Area Network, CAN-see

Section 7.5.3). This does not solve the fundamental problem, namely that the

temporal control at the CNI is not defined by an ET protocol. Temporal control in an

ET system is thus a global issue, depending on the behavior of the application

software in all nodes of the distributed system. From the point of view of temporal
behavior, ET systems are not composable. The basic capability to talk to each other

does not ensure a disciplined conversation.

In a number of proposals, the (sometimes fuzzy) notion of real-time network

management is suggested to solve this fundamental problem of node coordination in

the time domain. The following quote, taken from the minutes of a meeting of the

SAE (Society of Automotive Engineers) Multiplexing Committee (March 2, 1995)

concerning the SAE J1850 single channel communication protocol for automotive

applications, paints a vivid picture of this issue (bolds added):

SAE J1850 is a complete document. However, its content is not sufficient to

guarantee that devices designed and built to its requirements will communicate, as

intended, to perform some operational function. The reason for this is that SAE

J1850 does not provide a network management framework to manage total network

traffic. SAE J1850, and its companion J2178, establish how a device A, can report a

parameter X, to another device B, during normal vehicle operation. However, neither

of these documents provides a framework for agreement on why and when A shall

report X. Agreement on this is necessary so that devices which communicate to

36 CHAPTER 2 WHY A DISTRIBUTED SOLUTION?

cooperatively accomplish some function know what to expect from the other devices.

Without this agreement, the interoperability of designs cannot be ensured.

2.2.3 Time-Triggered Communication Systems

In a time-triggered (TT) communication system, temporal control resides within the

communication system, and is not dependent on the application software in the

nodes. State messages are transported from the sender CNI to the receiver CNI at

predetermined points in time which are stored in message scheduling tables within

the communication controllers. The host computers have no opportunity to influence

the temporal behavior of the communication system. The CNI is strictly a data-

sharing interface without any control signals crossing the interface. It thus acts as a

temporal firewall, isolating the temporal behavior of the host computer from the

temporal behavior of the communication system. There is no possibility for control-

error propagation from the host to the communication system, and vice versa.

The temporal properties of the CNI between a node and the communication system

are fully defined at design time. It is thus possible to test each node individually with

respect to the CNI. Since system integration will not change the temporal properties

of the CNI, a TT architecture is composable with respect to communication

timeliness.

2.3 SCALABILITY

Almost all large systems evolve over an extended period of time, i.e., over many

years or even decades of years. A successful computer system changes its

environment and this changed environment brings about new requirements on the

computer system itself. Only unsuccessful systems, which are obviously never used,

will not undergo changes. Evolving requirements are thus not an exception, but the

rule. Existing functions have to be modified, and many new functions have to be

added over the lifetime of the system. A scalable architecture is open to such changes,

and does not limit the extensibility of a system by some predefined upper limit.

Figure 2.4: Transparent expansion of a node into a new cluster.

2.3.1 Extensibility

A scalable architecture must not have any central bottleneck, neither in processing

capacity nor in communication capacity. Only distributed architectures provide the

necessary framework for unlimited growth since:

CHAPTER 2 WHY A DISTRIBUTED SOLUTION? 37

Nodes can be added within the given capacity of the communication channel.

This introduces additional processing power to the system.

If the communication capacity within a cluster is fully utilized, or if the

processing power of a node has reached its limit, a node can be transformed into

a gateway node to open a way to a new cluster. The interface between the

original cluster and the gateway node can remain unchanged (Figure 2.4).

This transformation of a node into a gateway supporting a new cluster requires the

proper design of the name space. This issue is discussed in Section 8.4.1.

2.3 .2 Complexity

Large systems can only be built if the effort required to understand the system

operation, i.e., the complexity of the system, remains under control as the system

grows. The complexity of a system relates to the number of parts, and the number

and types of interactions among the parts, that must be considered to understand a

particular function of the system. The effort required to understand any particular

function should remain constant, and independent of the system size. Of course, a

large system provides many more different functions than does a small system.

Therefore the effort needed to understand all functions of a large system grows with

the system size.

As indicated before, the complexity of a large system can be reduced if the inner

behavior of the subsystems can be encapsulated behind stable and simple interfaces.

Only those aspects of the behavior of a subsystem that are relevant to the function

under consideration must be examined to understand the particular function.

The partitioning of a system into subsystems, the encapsulation of the subsystem,

the preservation of the abstractions in case of faults, and most importantly, a strict

control over the interaction patterns among the subsystems, are thus the key

mechanisms for controlling the complexity of a large system.

In a time-triggered architecture, the structure depicted in Figure 2.4 encapsulates the

inner operation of one cluster from that of other clusters via the data-sharing gateway

interfaces. When reasoning about a particular function in a given cluster, the only

knowledge that is needed about the behavior of the other clusters is contained in the

temporal and value attributes of the data at the gateway interface. Because every TT

cluster exercises autonomous control, there are no control signals passing through

these gateway interfaces. In essence, the momentary values of the state variables at

the gateway CNIs to the other clusters form a sufficient abstraction of the

environment for the function under investigation. Such an architecture is scalable,

because the complexity of reasoning about the correctness of any system function is

determined by the cluster under investigation, and does not depend on the number of

clusters in the total system, i.e., on the system size.

(i)

(ii)

38 CHAPTER 2 WHY A DISTRIBUTED SOLUTION?

2.3.3 Silicon Cost

The expected further advances of microelectronics technology will make the design of

large distributed systems even more competitive when compared with the

implementation of the same functionality using a centralized system.

The implementation of a given specification with a distributed architecture requires

more hardware (i.e., silicon area) than that with a centralized architecture. The

additional hardware is needed for the realization of the communication system among

the nodes, the replicated implementation of certain system functions (e.g., the

operating system in each node), and the additional packaging cost. This extra

hardware causes a higher initial investment for a distributed solution than for a

centralized one.

Example: Assume that the implementation of the communication system requires

about 100,000 transistors. If the transistor count in a single-chip node is just

400,000, this amounts to 25% of the silicon area of a node. However if a node

contains 10,000,000 transistors–a size that is within the reach of today's technology–

then, the implementation of the same communication system requires only 1% of the

silicon area of the node (Figure 2.5).

Figure 2.5: Fraction of the silicon real-estate

of the communication controller in a node.

Example: The next generation of microcomputers for engine control, which will be

mass produced by the year 2000, will consist of a 32-bit CPU, about 512 kB of

memory, dedicated I/O processors, and a communication controller on a single chip.

On such a chip the communication controller will only require a few percent of the

available silicon area. To be competitive, the production cost of such a chip must be

about US $ 10.

According to Patterson [Pat90, p.60], the approximate cost for manufacturing a chip

is proportional to the third power of the die area:

Cost = K.(Die area)3

The proportionality factor K depends on the process technology and the production

parameters.

CHAPTER 2 WHY A DISTRIBUTED SOLUTION? 39

Although a centralized system with a powerful single CPU starts with a lower initial

cost, the growth curve of the cost, as a function of system size, rises with a larger

gradient for a centralized system than for a distributed system (Figure 2.6).

Figure 2.6: Cost growth of centralized versus distributed architectures.

As the size of a system increases, there exists a break-even point beyond which the

hardware for a distributed system is cheaper than that for the corresponding centralized

solution (Figure 2.6). At the present time, the VLSI field is developing at such a

rapid pace that the break-even point itself is moving to the right as a consequence of

a continuing reduction in the VLSI feature size.

Since the transition from a centralized implementation to a distributed

implementation requires substantial redesign of the system, it is important to

determine which of the cost curves of Figure 2.6 applies to an implementation.

Using a centralized system might provide a short-term cost advantage, but can lead to

a significant long-term cost disadvantage, as the functionality and size of a system

grows beyond the break-even point.

2.4 DEPENDABILITY

Implementing a dependable real-time service requires distribution of functions to

achieve effective fault containment, error containment, and fault tolerance so that the

service can continue despite the occurrence of faults. The term responsive system has

been introduced to denote a system that has all of the three attributes: distribution,

fault tolerance, and real-time performance [Mal94].

2.4.1 Error-Containment Regions

A fault-tolerant system must be structured into partitions that act as error -

containment regions in such a way that the consequences of faults that occur in one

of these partitions can be detected and corrected or masked before these consequences

corrupt the rest of the system. An error-containment region must implement a well-

specified service. This service is provided across a small interface to the outside world

so that an error in the service can be detected at this interface. We call the probability

40 CHAPTER 2 WHY A DISTRIBUTED SOLUTION?

that an error that occurs within an error-containment region is detected at one of the

interfaces of this error-containment region the error-containment coverage.

An error-containment region can be introduced at different levels, e.g., at the level of

a functional hardware block, or at the level of the task. In a distributed computer

system, it is reasonable to regard a complete node as an error-containment region and

to perform the error detection at the node's message interface to the communication

system. At this interface, error detection must be performed in the value domain and

in the time domain.

It is difficult to implement clean error-containment regions in a centralized

architecture because many system resources are multiplexed over many services. For

example, it is not possible to predict the consequences of an error in the hardware of a

central processor on a particular service because such an error can lead to a failure of

any one of the system services that use the central processor.

2.4.2 Replication

In a distributed system, a node must represent a unit of failure, preferably with a

simple failure mode, e.g., fail-silence. All inner failure modes of a node are mapped

into a single external failure mode– silence (see Section 6.1.1). The implementation

of the node must guarantee that such a failure hypothesis stipulated on the

architectural level will remain valid during the operation with a high probability.

Given that this failure hypothesis holds, node failures can be masked by providing

actively replicated nodes. The replicas must show deterministic behavior. The issue

of replica determinism, i.e., replicated nodes "visit" the same states at about the same

time, requires careful hardware/software design. It is close to impossible to

implement a deterministic behavior in a large system that supports many concurrent

tasks and relies on asynchronous preemptive scheduling. The topic of replica

determinism is discussed at length in Section 5.6.

2.4.3 Certification Support

Frequently the design of a safety critical system must be approved by an independent

certification agency. The certification agency bases its assessment of the system on

the analysis of the safety case presented by the designer. A safety case is the

accumulation of credible analytic and experimental evidence that convinces the

certification agency that the system is fit for its purpose, i.e., is safe to deploy. What

constitutes a sufficient safety case for the operation of a safety-critical computer

system is a topic of current discussion and varies among the different industrial

sectors (see also Section 12.1).

Not all of the faults in a large real-time computer system are equally critical. For

example, the aircraft industry is recommending a fault categorization according to the

following criteria [ARI92]:

(i) Catastrophic: Fault that prevents continued safe operation of the system and can
be the cause of an accident.

CHAPTER 2 WHY A DISTRIBUTED SOLUTION? 41

(ii) Hazardous: Fault that reduces the safety margin of the redundant system to an
extent that further operation of the system is considered critical.

(iii) Major: Fault that reduces the safety margin to an extent that immediate
maintenance must be performed.

(iv) Minor: Fault that has only a small effect on the safety margin. From the safety
point of view, it is sufficient to repair the fault at the next scheduled

maintenance.

No Effect: Fault that has no effect on the safety margin. (v)

The key concern in this categorization is the remainder of the safety margin after the

occurrence of a primary fault. The safety case must present trustworthy arguments

that the occurrence of a catastrophic or hazardous fault is extremely unlikely. The

classification of a fault into one of the listed categories is based on rational

arguments relating to the probability of the fault under investigation causing a

catastrophic failure.

The consequence of a fault is an error, i.e., a damage of the system state. An error in

a non-safety critical subsystem must be detected before it can propagate into a safety

critical subsystem. The issue of error containment thus plays a crucial role. If it is

not possible to demonstrate that the error-containment coverage is very close to one,

i.e., that the consequences of a particular error in a non safety-critical function do not

have an adverse effect on a safety-critical system function, then, the error in the non

safety-critical function must be classified as catastrophic. It is of utmost importance

to present an architecture that rules out by design any unintended interactions among

subsystems of differing criticality. This reverts to the issue of composability.

Figure 2.7: Critical (shaded) and non-critical (unshaded) system functions.

The distributed architecture of Figure 2.7 supports both critical (shaded) and non-

critical (unshaded) system functions. The architecture must ensure that a fault in a
non-critical node cannot affect the correct operation of a critical system function.

Evidently, the communication system itself is a critical resource that must be

certified. The software in the unshaded nodes can be excluded from the certification if

it is possible to demonstrate that there is no way that a fault in such software could

have any impact on the communication between the critical nodes.

In our opinion, it is very difficult to define independent error-containment regions in

a centralized architecture. As a consequence, the total amount of real-time software

that is contained in the central node must be subjected to the certification

42 CHAPTER 2 WHY A DISTRIBUTED SOLUTION?

requirements–a very expensive endeavor if one considers that the design and validation

of safety-critical software is 2-10 times more expensive than the design and validation

of non safety-critical software.

2.5 PHYSICAL INSTALLATION

There are many good arguments for the physical integration of a small micro-

controller into a mechanical subsystem to build a compact component of given

functionality with a simple and small external interface to the outside world:

(i) The electromechanical parts can interface directly with the microcontroller,
avoiding error-prone and expensive cabling and connections.

(ii) The component becomes self-contained and achieves a high degree of autonomy.
The functions of the component can be performed and tested without the need to

interconnect the component to a distant control system.

(iii) The communication to and from this component can be serialized and
accomplished by a single wire or twisted-pair field bus, thus simplifying the

installation of the component.

The field of mechatronics treats this integration of electromechanical and control

functions into a single unit as a primary design objective to reduce the manufacturing

and installation cost and to increase the reliability of the device. The microcontroller

in such a device can be considered as a node of a distributed system.

POINTS TO REMEMBER

• It is an established architectural principle that the function of an object should

determine its physical form. Distributed computer architectures enable the

application of this proven architectural principle to the design of computing

systems.

The interface between the communication controller within a node and the host

computer of the node, the communication-network interface (CNI), is the most

important interface within a distributed architecture.

An event message combines event semantics with external control and requires

one-to-one synchronization between the sender and the receiver.

A state message combines state-value semantics with autonomous control.

State-message semantics corresponds naturally to the requirements of control

applications.

The purpose of a gateway is to implement the relative views of two interacting

clusters. In most cases, only a small subset of the information in one cluster is
relevant to the other cluster.

In a time-triggered architecture, a gateway consists of a strictly data-sharing

interface. There are no control signals passing through a gateway component.

•

•

•

•

•

CHAPTER 2 WHY DISTRIBUTED SOLUTION? 43

The communication system is a critical resource of a distributed system, because

the loss of communication results in the loss of all global system services.

Therefore the reliability of the communication system should be an order of

magnitude higher than the reliability of the individual nodes.

An architecture is called composable with respect to a specified property if

system integration will not invalidate a property that has been established at the

subsystem level.

Temporal control in an ET system is a global issue, depending on the behavior

of all nodes in the system. From the point of view of temporal behavior, ET

systems are not composable.

In a time-triggered communication system that transports only state messages,

temporal control resides within the communication system. Since system

integration will not change the temporal properties of the CNI, a TT architecture

is composable with respect to temporal properties.

The complexity of a system relates to the number of parts and the number and

types of interactions among the parts that must be considered in order to

understand a particular function of the system.

The effort required to understand any particular function of a large system should

remain constant, and independent of the system size.

The partitioning of a system into subsystems, the encapsulation of the

subsystem, the preservation of the abstractions in case of faults, and most

importantly, a strict control over the interaction patterns among the subsystems,

are the key mechanisms for controlling the complexity of a large system.

In a time-triggered architecture, the momentary values of state variables at the

gateway CNIs to the other clusters form a sufficient abstraction of the

environment of the cluster under investigation.

The approximate cost of producing a chip is proportional to the third power of

the die area. Although a centralized system starts with a lower initial cost, the

growth curve of the cost as a function of system size rises with a larger gradient

for a centralized system than for a distributed system.

A fault-tolerant system must be structured into partitions that act as error -

containment regions in such a way that the consequences of faults that occur in

one of these partitions can be detected and corrected or masked before these

consequences corrupt the rest of the system.

If it cannot be demonstrated that the consequences of a particular fault in a non

safety-critical function will not affect any safety-critical system function, then

the fault in the non safety-critical function must be classified as catastrophic as

well.

The field of mechatronics treats the integration of electromechanical and control

functions into a single unit as a primary design objective to reduce the

manufacturing and installation cost, and to increase the reliability of the device.

•

•

•

•

•

•

•

•

•

•

•

•

A

44 CHAPTER 2 WHY A DISTRIBUTED SOLUTION?

BIBLIOGRAPHIC NOTES

The International Federation of Automatic Control (IFAC) periodically organizes a

workshop on Distributed Computer Control Systems. The 13th of these workshops

was held in Toulouse, France in September 1995 [IFA95]. The proceedings of these

workshops are a valuable source of information. Similarly, the IEEE Distributed

Systems Symposium, organized annually by the IEEE Computer Society, contains a

number of relevant papers covering important topics of distributed real-time systems.

A good survey of the conceptual and theoretical foundations of Distributed Systems

is contained in [Mul95].

REVIEW QUESTIONS AND PROBLEMS

2.1

2.2

What are the advantages of an architecture where every logical function is

implemented in a self-contained hardware unit? What are the disadvantages?

Why is it important to have stable and testable interfaces among the

subsystems of a large system? What is the cost associated with such

interfaces?

What are the differences between event-message semantics and state-message

semantics?

Discuss each one of the sixteen combinations of data semantics and control

strategy at the CNI (Table 2.1).

Why is it not possible to specify the temporal properties of the CNI in event-

triggered communication systems? What are the consequences of the missing

temporal specifications of the CNI on the temporal composability?

Discuss the responsiveness of a CNI that is supporting state-messages.

Compare this responsiveness to that of a CNI that supports event messages.

What are the economic effects of a further increase in the integration density

of VLSI devices on the field of distributed systems?

Give an estimate of the relationship between the silicon die area and the

production cost of a VLSI chip. Investigate these dependencies further by

studying the respective section in [Pat90, p.60].

Why is it difficult to define error-containment regions in a centralized

architecture?

What is a "safety case"?

Give examples of faults of different criticality in a control system of an

airplane.

How can an architecture support the certification of safety-critical real-time

systems?

Discuss the advantages/disadvantages of distributed real-time systems from

the point of view of physical installation.

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14 What is "mechatronics"?

Chapter 3

Global Time

OVERVIEW

This chapter starts with a general discussion on time and order. The notions of causal

order, temporal order, and delivery order and their interrelationships are elaborated.

The parameters that characterize the behavior and the quality of a digital clock are

investigated. Section 3.2 proceeds along the positivist tradition by introducing an

omniscient external observer with an absolute reference clock that can generate

precise timestamps for all relevant events. These absolute timestamps are used to

reason about the precision and accuracy of a global time base, and to expose the

fundamental limits of time measurement in a distributed real-time system.

In Section 3.3 the idea of a sparse time base is introduced to establish a consistent

view of the order of computer-generated events in a distributed real-time system

without having to execute an agreement protocol.

The topic of internal clock synchronization is covered in Section 3.4. First, the

notions of convergence function and drift offset are introduced to express the

synchronization condition that must be satisfied by any synchronization algorithm.

Then, the simple central-master algorithm for clock synchronization is presented, and

the precision of this algorithm is analyzed. Section 3.4.3 deals with the more

complex issue of fault-tolerant distributed clock synchronization. The jitter of the

communication system is a major limiting factor that determines the precision of the

global time base.

The topic of external synchronization is studied in Section 3.5. The role of a time

gateway and the problem of faults in external synchronization are discussed. Finally,

the network time protocol (NTP) time format of the Internet is presented.

46 CHAPTER 3 GLOBAL TIME

3.1 TIME AND ORDER

The notion of time is fundamental to our existence. We can reflect on past events and
on possible future events, and thus reason about events in the domain of time. In

many models of natural phenomena (e.g., Newtonian mechanics), time is an

independent variable that determines the sequence of states of a system. The basic

constants of physics are defined in relation to the standard of time, the physical

second. This is why the global time base in a distributed real-time system should be

based on the metric of the physical second.

In a typical real-time application, the distributed computer system performs a

multitude of different functions concurrently, e.g., the monitoring of real-time (RT)

entities (both their value and rate of change), the detection of alarm conditions, the

display of the observations to the operator, and the execution of control algorithms to

find new setpoints. These different functions are normally executed at different nodes.

In addition, replicated nodes are introduced to provide fault tolerance by active

redundancy. To guarantee a consistent behavior of the entire distributed system, it

must be ensured that all nodes process all events in the same consistent order,
preferably in the same temporal order in which the events occurred (see also the

example in Section 5.5). A global time base helps to establish such a consistent

temporal order on the basis of the timestamps of the events.

3.1.1 Different Orders

Temporal Order: The continuum of real time can be modeled by a directed

timeline consisting of an infinite set {T} of instants with the following properties

[Whi90,p.208] :

(i) {T} is an ordered set, that is, if p and q are any two instants, then either p is
simultaneous with q, or p precedes q, or q precedes p, where these relations are

mutually exclusive. We call the order of instants on the timeline the temporal

order.

(ii) {T} is a dense set. This means that there is at least one q between p and r iff p
is not the same instance as r, where p,q, and r are instants.

A section of the time line is called a duration. An event takes place at an instant of

time. An event does not have a duration. If two events occur at an identical instant,

then the two events are said to occur simultaneously. Instants are totally ordered;

however, events are only partially ordered, since simultaneous events are not in the

order relation. Events can be totally ordered if another criterion is introduced to order

events that occur simultaneously, e.g., in a distributed computer system, the number

of the node at which the event occurred can be used to order events that occur

simultaneously [Lam78].

Causal Order: In many real-time applications, the causal dependencies among
events are of interest. Consider a nuclear reactor equipped with many sensors that

CHAPTER3 GLOBAL TIME 47

monitor different RT entities (e.g., the values of pressures and the values of flows in

the various pipes). If a pipe ruptures, a number of RT entities will deviate outside

their normal operating ranges. Whenever the value of an RT entity leaves its normal

operating range and enters an alarm region, an alarm event is signaled to the operator.

At first, the pressure in the ruptured pipe changes abruptly, thereafter the flow

changes, causing many other RT entities to react and generate alarms. Such a set of

correlated alarms is called an alarm shower. The event that triggers the alarm shower

is called the primary event. The computer system must assist the operator in

identifying this primary event. Knowledge of the exact temporal order of the events is

helpful in identifying this primary event. If an event e1 occurs after an event e2, then

e1 cannot be the cause of e2. If, however, e1 occurs before e2, then it is possible, but

not certain, that e1 is the cause of e2. The temporal order of two events is necessary,

but not sufficient, for their causal order. Causal order is more than temporal order.

Reichenbach [Rei57,p. 145] defined causality by a mark method without reference to

time: "If event e1 is a cause of event e2, then a small variation (a mark) in e1 is

associated with small variation in e2, whereas small variations in e2 are not

necessarily associated with small variations in e1."

Example: Suppose there are two events e1 and e2:

e1 Somebody enters a room.

e2

Consider the following two cases

(i) e2 occurs after e1.

(ii) e1 occurs after e2.

In both cases the two events are temporally ordered. However, while it is unlikely

that there is a causal order between the two events of case (i), it is likely that such a

causal order exists between the two events of case (ii), since the person might enter

the room to answer the telephone.

If the (partial) temporal order between alarm events has been established, it is

possible to exclude an alarm event from being the primary event if it definitely

occurred later than another alarm event. Subsequently, we will show that a precise

global time base helps to determine the event set that is in this definitely-occurred-

later-than relation.

Delivery Order: A weaker order relation that is often provided by distributed

communication systems is a consistent delivery order. The communication system

guarantees that all host computers in the nodes see the sequence of events in the same
delivery order. This delivery order is not necessarily related to the temporal order of

event occurrences or the causal relationship between events.

3.1 .2 Clocks

In ancient history, the measurement of durations between events was mainly based on

subjective judgment. With the advent of modern science, objective methods for

measuring the progression of time by using physical clocks have been devised.

The telephone starts to ring.

48 CHAPTER 3 GLOBAL TIME

Physical Clock: A (physical) clock is a device for measuring time. It contains a

counter, and a physical oscillation mechanism that periodically generates an event to

increase the counter. The periodic event is called the microtick of the clock. (The

term tick is introduced in Section 3.2.1 to denote the events generated by the global

time).The duration between two consecutive microticks is the granularity of the

clock. The granularity of any digital clock leads to a digitalization error in time

measurement.

In subsequent definitions, we use the following notation: clocks are identified by

natural numbers 1, 2, . , n. If we express properties of clocks, the property is

identified by the clock number as a superscript with the microtick or tick number as a

subscript. For example, microtick i of clock k is denoted by microtickk

i .

Reference Clock: Assume an omniscient external observer who can observe all

events that are of interest in a given context (relativistic effects are disregarded). This

observer possesses a unique reference clock z with frequency f z which is in perfect

agreement with the international standard of time. The counter of the reference clock

is always the same as that of the international time standard. We call 1/f
z the

granulari ty g z of clock z. Let us assume that f z is very large, say 10
15

microticks/second, so that the granularity gz is 1 femtosecond (10-15 seconds). Since

the granularity of the reference clock is so small, the digitalization error of the

reference clock is disregarded in the following analysis.

Whenever the omniscient observer perceives the occurrence of an event e, she/he will

instantaneously record the current state of the reference clock as the time of

occurrence of this event e, and, will generate a timestamp for e. Clock(event) denotes

the timestamp generated by the use of a given clock to timestamp an event. Because

z is the single reference clock in the system, z(e) is called the absolute timestamp of

the event e.

The duration between two events is measured by counting the microticks of the

reference clock that occur in the interval between these two events. The granularity gk

of a given clock k is given by the nominal number nk of microticks of the reference

clock z between two microticks of this clock k.

The temporal order of events that occur between any two consecutive microticks of

the reference clock, i.e., within the granularity gz , cannot be reestablished from their

absolute timestamps. This is a fundamental limit in time measurement.

Clock Drift: The drift of a physical clock k between microtick i and microtick i+1

is the frequency ratio between this clock k and the reference clock, at the instant of

microtick i. The drift is determined by measuring the duration of a granule of clock k

with the reference clock z and dividing it by the nominal number nk of reference clock

microticks in a granule:

CHAPTER 3 GLOBAL TIME 49

Because a good clock has a drift that is very close to 1, for notational convenience the

notion of a drift rate p
k
i is introduced as

A perfect clock will have a drift rate of 0. Real clocks have a varying drift rate that is

influenced by environmental conditions, e.g., a change in the ambient temperature, a

change in the voltage level that is applied to a crystal resonator, or aging of the

crystal. Within specified environmental parameters, the drift rate of a resonator is

bounded by the maximum drift rate p
k

max
, which is documented in the data sheet of the

resonator. Typical maximum drift ratesP
k
max are in the range of 10 -2 to 10 -7 sec/sec, or

better, depending on the quality (and price) of the resonator. Because every clock has a

non-zero drift rate, free-running clocks, i.e., clocks that are never resynchronized,

leave any bounded relative time interval after a finite time, even if they are fully

synchronized at startup.

Example: During the Gulf war on February 25, 1991 a Patriot missile defense

system failed to intercept an incoming scud rocket. The clock drift over a 100 hour

period (which resulted in a tracking error of 678 meters) was blamed for the Patriot

missing the scud missile that hit an American military barracks in Dhahran, killing

29 and injuring 97.The original requirement was a 14 hour mission. The clock drift

during a 14 hour mission could be handled [Neu95, p.34].

Failure Modes of a Clock: A physical clock can exhibit two types of failures.

The counter could be mutilated by a fault so that the counter value becomes

erroneous, or the drift rate of the clock could depart from the specified drift rate (the

shaded area of Figure 3.1) because the clock starts ticking faster (or slower) than

specified.

Figure 3.1: Failure modes of a physical clock.

3.1.3 Precision and Accuracy

Offset: The offset at microtick i between two clocks j and k with the same

granularity is defined as

50 CHAPTER 3 GLOBAL TIME

The offset denotes the time difference between the respective microticks of the two

clocks, measured in the number of microticks of the reference clock.

Precision: Given an ensemble of clocks {1, 2, . . . , n}, the maximum offset

between any two clocks of the ensemble

is called the precision Πi of the ensemble at microtick i. The maximum of Πi over
an interval of interest is called the precision Π of the ensemble. The precision denotes

the maximum offset of respective microticks of any two clocks of the ensemble

during the period of interest. The precision is expressed in the number of microticks

of the reference clock.

Because of the drift rate of any physical clock, the clocks of an ensemble will drift

apart if they are not resynchronized periodically (i.e., brought closer together). The

process of mutual resynchronization of an ensemble of clocks to maintain a bounded

precision is called internal synchronization.

Accuracy: The offset of clock k with respect to the reference clock z at microtick i

is called the accuracy k
i . The maximum offset over all microticks i that are of interest

is called the accuracyk of clock k. The accuracy denotes the maximum offset of a

given clock from the external time reference during the time interval of interest.

To keep a clock within a bounded interval of the reference clock, it must be

periodically resynchronized with the reference clock. This process of

resynchronization of a clock with the reference clock is called external

synchronization.

If all clocks of an ensemble are externally synchronized with an accuracy A, then the

ensemble is also internally synchronized with a precision of at most 2A. The

converse is not true. An ensemble of internally synchronized clocks will drift from

the external time if the clocks are never resynchronized with the external time base.

3. 1. 4 Time Standards

In the last decades a number of different time standards have been proposed to measure

the time difference between any two events and to establish the position of an event

relative to some commonly agreed origin of a time base, the epoch. Two of these

time bases are relevant for the designer of a distributed real-time computer system,

the International Atomic Time (TAI) and the Universal Time Coordinated (UTC).

International Atomic Time (TAI–Temps Atomique Internationale):

The need for a time standard that can be generated in a laboratory gave birth to the

International Atomic Time (TAI). TAI defines the second as the duration of
9 192 631 770 periods of the radiation of a specified transition of the cesium atom

133. The intention was to define the duration of the TAI second so that it agrees with

CHAPTER 3 GLOBAL TIME 51

the second derived from astronomical observations. TAI is a chronoscopic timescale,

i.e., a timescale without any discontinuities.

Universal Time Coordinated (UTC): UTC is a time standard that has been

derived from astronomical observations of the rotation of the earth relative to the sun.
It is the basis for the time on the "wall-clock". However, there is a known offset

between the local wall-clock time and UTC determined by the timezone and by the

political decisions about when daylight savings time must be used. The UTC time

standard was introduced in 1972, replacing the Greenwich Mean Time (GMT) as an

international time standard. Because the rotation of the earth is not smooth, but

slightly irregular, the duration of the GMT second changes slightly over time. In

1972, it was internationally agreed that the duration of the second should conform to

the TAI standard, and that the number of seconds in an hour would have to be

modified occasionally by inserting a leap second into the UTC to maintain synchrony

between the UTC (wall-clock time) and astronomical phenomena, like day and night.

Because of this leap second, the UTC is not a chronoscopic time scale, i.e., it is not

free of discontinuities. It was agreed that on January 1, 1958 at midnight, both the

UTC and the TAI had the same value. Since then the UTC has deviated from TAI by

about 30 seconds. The point in time when a leap second is inserted into the UTC is

determined by the Bureau International de 1'Heure and publicly announced, so that the
current offset between the UTC and the TAI is always known.

Example: In Software Engineering Notes of March 1996 [Pet96, p.16] was the

following story:

Ivan Peterson reported on a problem that occurred when a leap second was added at

midnight on New Year's Eve 1995. The leap second was added, but the date

inadvertently advanced to Jan. 2. Ivars heard from a source at AP radio that the

synchronization of their broadcast networks depends on the official time signal, and

this glitch affected their operation for several hours until the problem was corrected.

You can't even count on the national timekeepers to get it right all the time.

Bob Huey responded (R I7 63) that making corrections at midnight is obviously

risky: (I) The day increments to January 1, 1996, 00:00:00. (2) You reset the clock

to 23:59:59, back one second. (3) The clock continues running. (4) The day changes

again, and it's suddenly, January 2, 1996, 00:00:00. No wonder they had problems.

3.2 TIME MEASUREMENT

If the real-time clocks of all nodes of a distributed system were perfectly synchronized

with the reference clock z, and all events were timestamped with this reference time,

then it would be easy to measure the interval between any two events or to

reconstruct the temporal order of events, even if variable communication delays

generated differing delivery orders. In a loosely coupled distributed system where

every node has its own local oscillator, such a tight synchronization of clocks is not

possible. A weaker notion of a universal time reference, the concept of global time,

is therefore introduced into a distributed system.

52 CHAPTER 3 GLOBAL TIME

3.2.1 Global Time

Suppose a set of nodes exists, each one with its own local physical clock ck that

ticks with granularity gk. Assume that all of the clocks are internally synchronized

with a precision Π, i.e., for any two clocks j,k and all microticks i

| z(microtick
j

i) - z(microtick
i
k) | < Π .

(In Section 3.4, a number of methods for the internal synchronization of the clocks is

presented). It is then possible to select a subset of the microticks of each local clock

k for the generation of the local implementation of a global notion of time. We call

such a selected local microtick i a macrotick (or a tick) of the global time. For

example, every tenth microtick of a local clock k may be interpreted as the global

tick, the macrotick t
i

k , of this clock (see Figure 3.2). If it does not matter at which

clock k the (macro)tick occurs, we denote the tick ti without a superscript. A global

time is thus an abstract notion that is approximated by properly selected microticks

from the synchronized local physical clocks of an ensemble.

Figure 3.2: Timestamps of a single event.

Reasonableness Condition: The global time t is called reasonable, if all local

implementations of the global time satisfy the condition

g > Π

the reasonableness condition for the global granularity g. This reasonableness

condition ensures that the synchronization error is bounded to less than one

macrogranule, i.e., the duration between two ticks. If this reasonableness condition is

satisfied, then for a single event e, that is observed by any two different clocks of the

ensemble,

i.e., the global timestamps for a single event can differ by at most one tick. This is

the best we can achieve. Because of the impossibility of synchronizing the clocks

perfectly, and the denseness property of real time, there is always the possibility of
the following sequence of events: clock j ticks, event e occurs, clock k ticks. In such

a situation, the single event e is timestamped by the two clocks j and k with a

difference of one tick (Figure 3.2).

One Tick Difference–What does it mean? What can we learn about the

temporal order of two events, observed by different nodes of a distributed system with

CHAPTER 3 GLOBAL TIME 53

a reasonable global time, given that the global timestamps of these two events differ

by one tick?

Figure 3.3: Temporal order of two events with a difference of one tick.

In Figure 3.3, four events are depicted, event 17, event 42, event 67 and event 69

(timestamps from the reference clock). Although the duration between event 17 and

event 42 is 25 microticks, and the duration between event 67 and event 69 is only

one microtick, both durations lead to the same measured difference of one

macrogranule. The global timestamp for event 69 is smaller than the global

timestamp for event 67, although event 69 occurred after event 67. Because of the

accumulation of the synchronization error and the digitalization error, it is not

possible to reconstruct the temporal order of two events from the knowledge that the

global timestamps differ by one tick. However, if the timestamps of two events differ

by two ticks, then the temporal order can be reconstructed because the sum of the

synchronization and digitalization error is always less than 2 granules.

Figure 3.4: Errors in interval measurement.

3.2.2 Interval Measurement

An interval is delimited by two events, the start event of the interval and the

terminating event of the interval. The measurement of these two events relative to

each other can be affected by the synchronization error and the digitalization error.

The sum of these two errors is less than 2g because of the reasonableness condition,
where g is the granularity of the global time. It follows that the true duration dtrue of

an interval is bounded by

54 CHAPTER 3 GLOBAL TIME

where dobs is the observed difference between the start event and the terminating

event of the interval. Figure 3.4 depicts how the observed duration of an interval of

length 25 microticks can differ, depending on which node observes the start event and

the terminating event. The global tick, assigned by an observing node to an event

delimiting the interval is marked by a small circle in Figure 3.4.

3.2.3 π/∆ -Precendence

Consider a distributed system that consists of three nodes j, k, and m. Every node is

to generate an event at the times 1, 5, and 9. An omniscient outside observer will see

the scenario depicted in Figure 3.5.

All events that are generated locally at the same global clock tick will occur within a

small interval π, where π ≤ Π, the precision of the ensemble. Events that occur at
different ticks will be at least ∆ apart (Figure 3.5). The omniscient outside observer

should not order the events that occur within , because these events are supposed to

occur at the same instant. Events that occur at different ticks should be ordered. How

many granules of silence must exist between the event subsets so that an outside

observer or another cluster will always recover the temporal order intended by the

sending cluster? Before we can answer this question (in Section 3.3.2) we must

intrduce the notion of π/∆ precedence

Figure 3.5: π/∆ precedence.

Given a set of events {E) and two durations π and ∆ where π << ∆, such that for any
two elements ei and ej of this set, the following condition holds:

where z is the reference clock. Such an event set is called π /∆-precedent. π/∆-

precedence means that a subset of the events that happen at about the same time (and

that are therefore close together within π) is separated by a substantial interval (at

least ∆) from the elements in another subset. If π is zero, then any two events of the

0/∆-precedent event set occur either at the same instant or are at least a duration
apart.

Assume a global time base with granularity g and two events, e1 and e2, that are

observed by two different nodes of the distributed system. Table 3.1 gives the

CHAPTER 3 GLOBAL TIME 55

minimum differences of the observed timestamps for differing 0/∆-precedence

[Ver94].

Table 3.1: Temporal order of observed events.

Because an observed difference of at least two ticks is necessary to establish the

temporal order of events from their timestamps, a 0/3g precedent event set is required

to be able to establish the temporal order from the timestamps generated by a global

clock.

3.2.4 Fundamental Limits of Time Measurement

The above analysis leads to the following four fundamental limits of time

measurement in distributed real-time systems with a reasonable global time base with

granularity g:

(i) If a single event is observed by two different nodes, there is always the
possibility that the timestamps differ by one tick. A one-tick difference in the

timestamps of two events is not sufficient to reestablish the temporal order of

the events from their timestamps.

If the observed duration of an interval is dobs, then the true duration dtrue is

bounded by
(ii)

(iii) The temporal order of events can be recovered from their timestamps, if the
difference between their timestamps is equal to or greater than 2 ticks.

(iv) The temporal order of events can always be recovered from their timestamps, if
the event set is at least 0/3g precedent.

3.3 DENSE TIME VERSUS SPARSE TIME

Example: It is known a priori that a particular train will arrive at a train station

every hour. If the train is always on time and all clocks are synchronized, it is

possible to uniquely identify each train by its time of arrival. Even if the train is

slightly off, say, by 5 minutes, and the clocks are slightly out of synchronization,
say, by one minute, there will be no problem in uniquely identifying a train by its

56 CHAPTER 3 GLOBAL TIME

time of arrival. What are the limits within which a train can still be uniquely

identified by its time of arrival?

Figure 3.6: Sparse time-base.

Assume a set {E} of events that are of interest in a particular context. This set {E}

could be the ticks of all clocks, or the events of sending and receiving messages. If

these events are allowed to occur at any instant of the timeline, then, we call the time

base dense. If the occurrence of these events is restricted to some active intervals of

duration ε, with an interval of silence of duration ∆ between any two active intervals,

then we call the time base ε/∆-sparse, or simply sparse for short (Figure 3.6). If a
system is based on a sparse time base, there are time intervals during which no

significant event is allowed to occur.

It is evident that the occurrences of events can only be restricted if the given system

has the authority to control these events, i.e., these events are in the sphere of

control of the computer system [Dav79]. For example, within a distributed

computing system the sending of messages can be restricted to some intervals of the

timeline and can be forbidden at some other intervals. The occurrence of events

outside the sphere of control of the computer system cannot be restricted. These

external events are based on a dense time base.

3.3.1 Dense Time-base

Suppose that we are given two events e1 and e2 that occur on a dense time base. If

these two events are closer together than 3g, where g is the granularity of the global

time, then, it is not always possible to establish the temporal order, or even a

consistent order of these two events on the basis of the timestamps generated by the
different nodes if no agreement protocol (see below) is applied.

Figure 3.7: Different observed order of two events e1 and e2.

CHAPTER 3 GLOBAL TIME 57

Example: Consider the scenario of Figure 3.7 with two events, e1 and e2, which
are 2.5 granules apart. Event e1 is observed by node j at time 2 and by node m at

time 1, while e2 is only observed by node k that reports its observation "e2 occurred

at 3" to node j and node m. Node j calculates a timestamp difference of one tick and

concludes that the events occurred at about the same time and cannot be ordered. Node

m calculates a timestamp difference of 2 ticks and concludes that e1 has definitely

occurred before e2. The two nodes j and m have an inconsistent view about the order

of event occurrence.

Agreement Protocol: To arrive at a consistent view (which does not necessarily

reflect the temporal order of event occurrence) of the order of the events, the nodes

must execute an agreement protocol. The first phase of an agreement protocol

requires an information interchange among the nodes of the distributed system with

the goal that every node acquires the differing local views about the state of the world

from every other node. At the end of this first phase, every node possesses exactly the

same information as every other node. In the second phase of the agreement protocol,

each node applies a deterministic algorithm to this consistent information to reach

the same conclusion–the commonly agreed value. In the fault-free case, an agreement

algorithm requires an additional round of information exchange as well as the

resources for executing the agreement algorithm (see also Section 9.2).

Agreement algorithms are costly, both in terms of communication requirements,

processing requirements, and–worst of all–in terms of the additional delay they

introduce into a control loop. It is therefore expedient to look for solutions to the

ordering problem that do not require these additional overheads.

3.3.2 Sparse Time-Base

Consider a distributed system that consists of two clusters: cluster A generates

events, and cluster B observes these generated events. Each one of the clusters has its

own cluster-wide synchronized time with a granularity g, but these two cluster-wide

time bases are not synchronized with each other. Under what circumstances is it

possible for the nodes in the observing cluster to reestablish the intended temporal

order of the generated events without the need to execute an agreement protocol?

If two nodes, nodes j and k of cluster A, generate two events at the same cluster-wide

tick ti, i.e., at tick ti

j and at tick t i
k , then these two events can be a distance Π apart

from each other, where g > Π, the granularity of the cluster-wide time. Because there

is no intended temporal order among the events that are generated at the same cluster-

wide tick of cluster A, the observing cluster B should never establish a temporal order

among the events that have been sent at about the same time. On the other hand, the

observing cluster B should always reestablish the temporal order of the events that

have been sent at different cluster-wide ticks. Is it sufficient if cluster A generates a

1g/3g precedent event set, i.e., after every cluster-wide tick at which events are

allowed to be generated there will be silence for at least three granules?

58 CHAPTER 3 GLOBAL TIME

If cluster A generates a 1/3g precedent event set, then it is possible that two events

that are generated at the same cluster-wide tick at cluster A will be timestamped by

cluster B with timestamps that differ by 2 ticks. The observing cluster B should not

order these events (although it could), because they have been generated at the same

cluster-wide tick. Events that are generated by cluster A at different cluster-wide ticks

(3g apart) and therefore should be ordered by cluster B, could also obtain timestamps

that differ by 2 ticks. Cluster B cannot decide whether or not to order events with a

timestamp difference of 2 ticks. To resolve this situation, cluster A must generate a

1/4g precedent event set. Cluster B will not order two events if their timestamps

differ by ≤ 2 ticks, but will order two events if their timestamps differ by ≥ 3 ticks,

thus reestablishing the temporal order that has been intended by the sender.

3.3.3 Space-Time Lattice

The ticks of the global clock can be seen as generating a space-time lattice, as

depicted in Figure 3.8. A node is allowed to generate an event (e.g., send a message)

at the filled dots and must be silent at the empty dots. This rule makes it possible for

the receiver to establish a consistent temporal order of events without executing an

agreement protocol. Although a sender might have to wait for four ticks before

generating an event, this is still much faster than executing an agreement protocol,

provided a global time base of sufficient precision is available.

Figure 3.8: 1/4g precedent event set.

Events that occur outside the sphere of control of the computer system cannot be

confined to a sparse time base: they happen on a dense time base. To generate a

consistent view of events that occur in the controlled object, and that are observed by

more than one node of the distributed computer system, the execution of an

agreement protocol is unavoidable at the instrumentation inerface (i.e., the interface

between the computer system and the controlled object).

Node failures also occur on a dense time base. In a TT architecture, it is possible to

restrict to a sparse time base the points in time when node failures are recognized by

the other nodes of the distributed computer system. This avoids the need to execute

an agreement protocol for the consistent detection of node failures. This issue will be
discussed further in Chapter 8 on the Time-Triggered Protocol TTP.

CHAPTER 3 GLOBAL TIME 59

3.4 INTERNAL CLOCK SYNCHRONIZATION

The purpose of internal clock synchronization is to ensure that the global ticks of all

correct nodes occur within the specified precision Π, despite the varying drift rate of

the local real-time clock of each node. Because the availability of a proper global

time base is crucial for the operation of a distributed real-time system, the clock

synchronization should be fault-tolerant.

Every node of a distributed system has a local oscillator that (micro)ticks with a

frequency determined by the physical parameters of the oscillator. A subset of the

local oscillator's microticks called the ticks (or macroticks–see Section 3.2.1), are

interpreted as the global time ticks at the node. These global time ticks increment the

node's local global time counter.

Figure 3.9: Synchronization condition.

3.4.1 The Synchronization Condition

The global time ticks of each node must be periodically resynchronized within the

ensemble of nodes to establish a global time base with specified precision. The

period of resynchronization is called the resynchronization interval. At the end of each

resynchronization interval, the clocks are adjusted to bring them into better agreement

with each other. The convergence function Φ denotes the offset of the time values

immediately after the resynchronization. Then, the clocks again drift apart until they

are resynchronized at the end of the next resynchronization interval Rint (Figure 3.9).

The drift offset Γ indicates the maximum divergence of any two good clocks from

each other during the resynchronization interval Rint, where the clocks are free

running. The drift offset Γ depends on the length of the resynchronization interval

Rint and the maximum specified drift rate ρ of the clock:

An ensemble of clocks can only be synchronized if the following synchronization

condition between the convergence function Φ, the drift offset Γ and the precision Γ

holds:

60 CHAPTER 3 GLOBAL TIME

Assume that at the end of the resynchronization interval, the clocks have diverged so

that they are at the edge of the precision interval Π (Figure 3.9). The
synchronization condition states that the synchronization algorithm must bring the

clocks so close together that the amount of divergence during the next free-running

resynchronization interval will not cause a clock to leave the precision interval.

Byzantine Error: The following example explains how, in an ensemble of three

nodes, a malicious node can prevent the other two nodes from synchronizing their

clocks since they cannot satisfy the synchronization condition. Assume an ensemble

of three nodes, and a convergence function where each of the three nodes sets its clock

to the average value of the ensemble. Clocks A and B are good, while clock C is a

malicious "two-faced" clock that disturbs the other two good clocks in such a manner

that neither of them will ever correct their time value (Figure 3.10), and will thus
eventually violate the synchronization condition.

Figure 3.10: Behavior of a malicious clock.

Such a malicious, "two-faced" manifestation of behavior is sometimes called a

malicious error or a Byzantine error, During the exchange of the synchronization

messages, a Byzantine error can lead to inconsistent views of the state of the clocks

among the ensemble of nodes. A special class of algorithms, the in teract ive-

consistency algorithms [Pea80], inserts additional rounds of information exchanges to

agree on a consistent view of the time values at all nodes. These additional rounds of

information exchanges increase the quality of the precision at the expense of

additional communication overhead. Other algorithms work with inconsistent

information, and establish bounds for the maximum error introduced by the

inconsistency. An example of such an algorithm is the Fault-Tolerant-Average

algorithm, described later in this section. It can be shown [Lam85] that clock

synchronization can only be guaranteed in the presence of Byzantine errors if the total

number of clocks N ≥ (3k +1), where k is the number of Byzantine faulty clocks.

3.4.2 Central Master Synchronization

A unique node, the central master, periodically sends the value of its time counter in

synchronization messages to all other nodes, the slave nodes. As soon as a slave node

receives a new time value from the master, the slave records the state of its local-time

counter as the time of message arrival. The difference between the master's time,

CHAPTER 3 GLOBAL TIME 61

contained in the synchronization message, and the recorded slave's time of message

arrival, corrected by the latency of the message transport, is a measure of the

deviation of the two clocks. The slave then corrects its clock by this deviation to

bring it into agreement with the master's clock.

The convergence function Φ οf the central master algorithm is determined by the

difference between the fastest and slowest message transmission to the slave nodes of

the ensemble, i.e., the latency jitter ε between the event of reading the clock value at

the master and the events of message arrival at all slaves.

Applying the synchronization condition, the precision of the central master algorithm

is given by:

The central master synchronization is often used in the startup phase of a distributed

system. It is simple, but not fault tolerant, since a failure of the master ends the

resynchronization, causing the free-running clocks of the slaves to leave the precision

interval soon thereafter. In a variant of this algorithm, a multi-master strategy is

followed: if the active master fails and the failure is detected by a local time-out at a

"shadow" master, one of the shadow masters assumes the role of the master and

continues the resynchronization.

3.4.3 Distributed Synchronization Algorithms

Typically, distributed fault-tolerant clock resynchronization proceeds in three distinct

phases, In the first phase every node acquires knowledge about the state of the global

time counters in all the other nodes by exchange of messages among the nodes. In

the second phase, every node analyzes the collected information to detect errors, and

executes the convergence function to calculate a correction value for the local global

time counter. A node must deactivate itself if the correction term calculated by the

convergence function is larger than the specified precision of the ensemble. Finally,

in the third phase, the local time counter of the node is adjusted by the calculated

correction value. Existing algorithms differ in the way in which the time values are

collected from the other nodes, in the type of convergence function used, and in the

way in which the correction value is applied to the time counter.

Reading the Global Time: In a local-area network the most important term

affecting the precision of the synchronization is the jitter of the time messages that

carry the current time values from one node to all the other nodes. The known

minimal delay for the transport of a time message between two nodes can be

compensated by an a priori known delay-compensation term [Kop87] that

compensates for the delay of the message in the transmission channel and in the

interface circuitry. The delay jitter depends more than anything else on the system

level at which the synchronization message is assembled and interpreted. If this is

done at a high level of the architecture, e.g., in the application software, all random

delays caused by the scheduler, the operating system, the queues in the protocol

software, the message retransmission strategy, the media-access delay, the interrupt

delay at the receiver, and the scheduling delay at the receiver, accumulate and degrade

62 CHAPTER 3 GLOBAL TIME

the quality of the time values, thus deteriorating the precision of the clock

synchronization. Table 3.2 gives approximate value ranges for the jitter that can be

expected at the different levels [Kop87]:

Table 3.2: Approximate jitter of the synchronization message.

Since a small jitter is important to achieve high precision in the global time, a

number of special methods for jitter reduction have been proposed. Christian [Cri89]

proposed the reduction of the jitter at the application software level using a

probabilistic technique: a node queries the state of the clock at another node by a

query-reply transaction, the duration of which is measured by the sender. The received

time value is corrected by the synchronization message delay that is assumed to be

half the round-trip delay of the query-reply transaction (assuming that the delay

distribution is the same in both directions). A different approach is taken in the

MARS system [Kop89]. A special clock synchronization unit has been implemented

to support the segmentation and assembly of synchronization messages at the

hardware level, thereby reducing the jitter to a few microseconds.

Impossibility Result: The important role of the latency jitter Η for internal

synchronization is emphasized by an impossibility result by Lundelius and Lynch

[Lun84]. According to this result, it is not possible to internally synchronize the

clocks of an ensemble consisting of N nodes to a better precision than

(measured in the same units as ε) even if it is assumed that all clocks have perfect

oscillators, i.e., the drift rates of all the local clocks are zero.

The Convergence Function: The construction of a convergence function is

demonstrated by the example of the distributed Fault-Tolerant-Average (FTA)

algorithm in a system with N nodes where k Byzantine faults should be tolerated.

The FTA algorithm is a one-round algorithm that works with inconsistent

information and bounds the error introduced by the inconsistency. At every node, the

N measured time differences between the node's clock and the clocks of all other

nodes are collected (the node considers itself a member of the ensemble with time

difference zero). These time differences are sorted by size. Then the k largest and the k

smallest time differences are removed (assuming that an erroneous time value is

either larger or smaller than the rest). The remaining N-2k time differences are, by

definition, within the precision window. The average of these remaining time

differences is the correction term for the node's clock.

CHAPTER 3 GLOBAL TIME 63

Figure 3.11: Accepted and rejected time values.

Example: Figure 3.11 shows an ensemble of 7 nodes and one tolerated Byzantine

fault. The FTA takes the average of the five accepted time values shown.

Figure 3.12: Worst possible behavior of a malicious (Byzantine) clock.

The worst-case scenario occurs if all good clocks are at opposite ends of the precision

window Π, and the Byzantine clock is seen at different corners by two nodes. In the

example of Figure 3.12, node j will calculate an average value of 4Π/5 and node k

will calculate an average value of 3Π/5; the difference between these two terms,

caused by the Byzantine fault, is thus Π/5.

Precision of the FTA: Assume a distributed system with N nodes, each one

with its own clock (all time values are measured in seconds). At most k out of the N

clocks behave in a Byzantine manner.

A single Byzantine clock will cause the following difference in the calculated

averages at two different nodes in an ensemble of N clocks:

In the worst case a total of k Byzantine errors will thus cause an error term of

Considering the jitter of the synchronization messages, the convergence function of

the FTA algorithm is given by

Combining the above equation with the synchronization condition (Section 3.4.1)

and performing a simple algebraic transformation, we have the precision of the FTA

algorithm to be:

where µ (N,k) is called the Byzantine error term and is tabulated in Table 3.3.

64 CHAPTER 3 GLOBAL TIME

Table 3.3: Byzantine error term µ(N,k).

The Byzantine error term µ (N,k) indicates the loss of quality in the precision due to

the inconsistency arising from the Byzantine errors. In a real environment, at most

one Byzantine error is expected to occur in a synchronization round (and even this

will happen very, very infrequently), and thus, the consequences of a Byzantine error

in a properly-designed synchronization system are not serious.

The drift offset Γ is determined by the quality of the selected oscillator and the length

of the resynchronization interval. If a standard quartz oscillator with a nominal drift

rate of 10-4 sec/sec is used, and the clocks are resynchronized every second, then ∗ is

about 100 µsec. Because the stochastic drift rate of a crystal is normally two orders of

magnitude smaller than the nominal drift rate that is determined by the systematic

error of the quartz oscillator, it is possible to reduce the drift offset Γ by two orders of

magnitude using systematic error compensation [Sch96].

Many other convergence functions for the internal synchronization of the clocks have

been proposed and analyzed in the literature [Sch88].

3.4.4 State Correction versus Rate Correction

The correction term calculated by the convergence function can be applied to the

local-time value immediately (state correction), or the rate of the clock can be

modified so that the clock speeds up or slows down during the next resynchronization

interval to bring the clock into better agreement with the rest of the ensemble (rate

correction).

State correction is simple to apply, but it has the disadvantage of generating a

discontinuity in the time base. If clocks are set backwards and the same nominal-time

value is reached twice, then, pernicious failures can occur within the real-time

software (see the example in Section 3.1.4). It is therefore advisable to implement

rate correction with a bound on the maximum value of the clock drift so that the error

in interval measurements is limited. The resulting global time base then maintains

the chronoscopy property despite the resynchronization. Rate correction can be

implemented either in the digital domain by changing the number of microticks in

some of the (macro)ticks, or in the analog domain by adjusting the voltage of the

crystal oscillator. To avoid a common-mode drift of the complete ensemble of clocks,

the average of the rate correction terms among all clocks in the ensemble should be

close to zero.

CHAPTER 3 GLOBALTIME 65

3.5 EXTERNAL CLOCK SYNCHRONIZATION

External synchronization links the global time of a cluster to an external standard of

time. For this purpose it is necessary to access a time server, i.e., an external time

source that periodically broadcasts the current reference time in the form of a time

message. This time message must raise a synchronization event (such as the beep of

a wrist watch) in a designated node of the cluster and must identify this

synchronization event on the agreed time scale. Such a time scale must be based on a

constant measure of time, e.g., the physical second, and must relate the

synchronization event to a defined origin of time, the epoch. The interface node to a

time server is called a time gateway.

Figure 3.13: Flow of external synchronization.

3.5.1 Principle of Operation

Assume that the time gateway is connected to a GPS (Global Positioning System)

receiver. This UTC time server periodically broadcasts time messages containing a

synchronization event, as well as information to place this synchronization event on

the TAI scale. The time gateway must synchronize the global time of its cluster with

the time received from the time server. This synchronization is unidirectional, and

therefore asymmetric, as shown in Figure 3.13.

If another cluster is connected to this "primary" cluster by a secondary time gateway,

then, the unidirectional synchronization functions in the same manner. The secondary

time gateway considers the synchronized time of the primary cluster as its time

reference, and synchronizes the global time of the secondary cluster.

While internal synchronization is a cooperative activity among all the members of a

cluster, external synchronization is an authoritarian process: the time server forces its

view of external time on all its subordinates. From the point of view of fault

tolerance, such an authoritarian regime introduces a problem: if the authority sends an

incorrect message, then all its "obedient" subordinates will behave incorrectly.

However, for external clock synchronization, the situation is under control because of

the "inertia" of time. Once a cluster has been synchronized, the fault-tolerant global

66 CHAPTER 3 GLOBAL TIME

time base within a cluster acts as a monitor of the time server. A time gateway will

only accept an external synchronization message if its content is sufficiently close to

its view of the external time. The time server has only a limited authority to correct

the drift rate of a cluster. The enforcement of a maximum common-mode drift rate–

we propose less than 10-4 sec/sec–is required to keep the error in relative time-

measurements small. The maximum correction rate is checked by the software in

each node of the cluster.

The implementation must guarantee that it is impossible for a faulty external

synchronization to interfere with the proper operation of the internal synchronization,

i.e., with the generation of global time within a cluster. The worst possible failure

scenario occurs if the external time server fails maliciously. This leads to a common-

mode deviation of the global time from the external time base with the maximum

permitted correction rate. The internal synchronization within a cluster will, however,

not be affected by this controlled drift from the external time base.

3.5.2 Time Formats

Over the last few years, a number of external-time formats have been proposed for

external clock synchronization. The most important one is the standard for the time

format proposed in the Network Time Protocol (NTP) of the Internet [Mil91]. This

time format (Figure 3.14) with a length of eight bytes contains two fields: a four

byte full seconds field, where the seconds are represented according to UTC, and a

fraction of a second field, where the fraction of a second is represented as a binary

fraction with a resolution of about 232 picosecond. On January 1, 1972, at midnight

the NTP clock was set to 2,272,060,800.0 seconds, i.e., the number of seconds since

January 1, 1900 at 00:00h.

Figure 3.14: Time format in the Network Time Protocol (NTP).

The NTP time is not chronoscopic because it is based on UTC. The occasional

insertion of a leap second into UTC can disrupt the continuous operation of a time-

triggered real-time system.

3.5.3 Time Gateway

The time gateway must control the timing system of its cluster in the following

ways:

(i)

(ii)

It must initialize the cluster with the current external time.

It must periodically adjust the rate of the global time in the cluster to bring it

into agreement with the external time and the standard of time measurement, the

second.

CHAPTER 3 GLOBAL TIME 67

(iii) It must periodically send the current external time in a time message to the
nodes in the cluster so that a reintegrating node can reinitialize its external time

value.

The time gateway achieves this task by periodically sending a time message with a

rate-correction byte. This rate-correction byte is calculated in the time gateway's

software. First, the difference between the occurrence of a significant event, e.g., the

exact start of the full second in the time server, and the occurrence of the related
significant event in the global time of the cluster, is measured by using the local

time base (microticks) of the gateway node. Then, the necessary rate adjustment is

calculated, bearing in mind the fact that the rate adjustment is bounded by the agreed

maximum rate correction. This bound on the rate correction is necessary to keep the

maximum deviation of relative time measurements in the cluster below an agreed

threshold, and to protect the cluster from faults of the server.

POINTS TO REMEMBER

• An event happens at an instant, i.e., at a point of the timeline. A duration is a

section of the timeline delimited by two instants.

A consistent delivery order of a set of events in a distributed system does not

necessarily reflect the temporal or causal order of the events.

A physical clock is a device for time measurement that contains a counter and a

physical oscillation mechanism that periodically generates an event to increase

the counter.

Typical maximum drift rates ρ of physical clocks are in the range from 10-2 to

10-7 sec/sec, or lower, depending on the quality (and price) of the resonator.

The precision denotes the maximum offset of respective ticks of any two clocks

of an ensemble during the time interval of interest.

The accuracy of a clock denotes the maximum offset of a given clock from the

external time reference during the time interval of interest.

TAI is a chronoscopic timescale, i.e., a timescale without any discontinuities,

that is derived from the frequency of the radiation of a specified transition of the

cesium atom 133.

UTC is a non-chronoscopic timescale that is derived from astronomical

observations of the rotation of the earth in relation to the sun.

A global time is an abstract notion that is approximated by properly selected

microticks from the synchronized local physical clocks of an ensemble.

The reasonableness condition ensures that the synchronization error is always

less than one granule of the global time.

If the difference between the timestamps of two events is equal to or larger than

2 ticks, then that temporal order of events can be recovered, provided the global

time is reasonable.

•

•

•

•

•

•

•

•

•

•

68 CHAPTER 3 GLOBAL TIME

The temporal order of events can always be recovered from their timestamps, if
the event set is at least 0/3g precedent.

If events happen only at properly selected points of a sparse time base, then it is
possible to recover the temporal order of the events without the execution of an

agreement protocol.

The convergence function Φ denotes the offset of the time values immediately
after the resynchronization.

The drift offset Γ indicates the maximum divergence of any two good clocks
from each other during the resynchronization interval Rint, in which the clocks

are free running.

The synchronization condition states that the synchronization algorithm must
bring the clocks so close together that the amount of divergence during the next

free-running resynchronization interval will not cause a clock to leave the

precision interval.

Clock synchronization is only possible if the total number of clocks N is larger

or equal to (3k + 1) , if k is the number of clocks behaving maliciously faulty.

The most important term affecting the precision of the synchronization is the

latency jitter of the synchronization messages that carry the current time values

from one node to all other nodes of an ensemble.

When applying the fault-tolerant average algorithm, the Byzantine error factor

µ (N, k) indicates the loss of quality in the precision caused by the Byzantine

errors.

State correction of a clock has the disadvantage of generating a discontinuity in

the time base.

While internal synchronization is a cooperative activity among all members of a

cluster, external synchronization is an authoritarian process: the timeserver forces

its view of external time on all its subordinates.

The NTP time, based on UTC, is not chronoscopic. The occasional insertion of

a leap second can disrupt the continuous operation of a time-triggered real-time

system.

The time gateway maintains the external synchronization by periodically sending

a time message with a rate correction byte to all the nodes of a cluster.

•

•

•

•

•

•

•

•

•

•

•

BIBLIOGRAPHIC NOTES

The problem of generating a global time base in a distributed system has first been

analyzed in the context of the SIFT [Wen78] and FTMP [Hop78] projects. The

problem was investigated again in the mid-eighties by a number of research groups.

Lundelius and Lynch [Lun84] established theoretical bounds on the achievable

synchrony in 1984. Lamport and Melliar Smith [Lam85] and Schneider [Sch86]
investigated the synchronization of clocks in the presence of Byzantine faults, and

•

CHAPTER 3 GLOBALTIME 69

compared a number of different synchronization algorithms. A VLSI chip for clock

synchronization in distributed systems was developed by Kopetz and Ochsenreiter

[Kop87]. Probabilistic clock synchronization, i.e., clock synchronization in systems

where no upper bound on the jitter is known, has been studied by Cristian [Cri89],

and Olson and Shin [Ols91]. Shin also investigated the problem of clock

synchronization in large multiprocessor systems [Shi87]. The Network Time

Protocol of the Internet was published in 1991 by Mills [Mil91]. The concept of a

sparse time was first presented by Kopetz [Kop92]. The issue of establishing a global

time base among a set of nodes with differing oscillators is covered in [Kop95d].

Schedl [Sch96] developed a detailed simulation model to simulate the effects of many

parameters that determine the precision and accuracy of a global time base. A

compendium of papers on clock synchronization can be found in the tutorial by Yang

and Marsland [Yan93]. For a more philosophical treatment of the problem of time,

the reader is advised to study the excellent book by Withrow [Whi90] entitled "The

Natural Philosophy of Time".

REVIEW QUESTIONS AND PROBLEMS

3.1

3.2

3.3

3.4

3.5

3.6

3.6

3.8

3.9

What is the difference between an instant and an event?

What is the difference between temporal order, causal order and a consistent

delivery order of messages? Which of the orders implies another?

How can clock synchronization assist in finding the primary event of an

alarm shower?

What is the difference between UTC and TAI? Why is TAI better suited as a

time base for distributed real-time systems than UTC?

Define the notions of offset, drift, drift rate, precision and accuracy.

What is the difference between internal synchronization and external

synchronization?

What are the fundamental limits of time measurement?

When is an event set π/∆-precedent?

What is an agreement protocol? Why should we try to avoid agreement

protocols in real-time systems? When is it impossible to avoid agreement

protocols?

What is a sparse time base? How can a sparse time base help to avoid

agreement protocols?

Give an example that shows that, in an ensemble of three clocks a Byzantine

clocks, can disturb the two good clocks such that the synchronization

condition is violated.

Given a clock synchronization system that achieves a precision of 90

microseconds, what is a reasonable granularity for the global time? What are

the limits for the observed values for a time interval of 1.1 msec?

3.13 What is the role of the convergence funct ion in internal clock

synchronization?

3.10

3.11

3.12

70 CHAPTER 3 GLOBAL TIME

3.14 Given a latency jitter of 20 µsec, a clock drift rate of 10-5sec/sec, and a

resynchronization period of 1 second, what precision can be achieved by the

central master algorithm?

What is the effect of a Byzantine error on the quality of synchronization by

the FTA algorithm?

Given a latency jitter of 20 µsec, a clock drift rate of 10-5 sec/sec and a

resynchronization period of 1 second, what precision can be achieved by the

FTA algorithm in a system with 10 clocks where 1 clock could be

malicious?

Discuss the consequences of an error in the external clock synchronization.

What effect can such an error have on the internal clock synchronization in

the worst possible scenario?

3.15

3.16

3.17

Chapter 4

Modeling Real-Time Systems

OVERVIEW

In this chapter, a conceptual model of a distributed real-time system is developed. The

focus of the model is on the system structure and on the temporal aspects of its

behavior. After a short section on the essence of model building, a clear distinction is

made between the relevant properties that must be part of the conceptual model, and

the irrelevant details that can be neglected at the conceptual level. The structural

elements of the model are tasks, nodes, fault-tolerant units, and clusters. The

important issues of interface placement and interface layout between the structural

elements are analyzed in detail. Correctly designed external interfaces provide

understandable abstractions to the interfacing partners, and capture the essential

properties of the interfacing subsystems while hiding the irrelevant details.

It is important to distinguish clearly between temporal control and logical control in

the design of a real-time system. Temporal control determines when a task must be

executed or a message must be sent, while logical control is concerned with the

control flow within a sequential task. The merging of temporal control and logical

control adds to the complexity of a design, as shown by a convincing example in

Section 4.4.1.

A deadline for the completion of an RT transaction can only be guaranteed if the

worst-case data-independent execution times of all application and communication

tasks that are part of the transaction are known a priori. Modern microprocessors with

caches and pipelines make the worst-case execution time analysis challenging. In

these modern microprocessors, the context switches caused by interrupts can increase

the administrative overhead significantly.

The final section is devoted to an analysis of the internal state or history state (h-

state) of a node.

72 CHAPTER 4 MODELING REAL-TIME SYSTEMS

4.1 APPROPRIATE ABSTRACTIONS

4.1.1

The limited information processing capacity of the human mind–compared to the

large amount of information in the real world–requires a goal-oriented information

reduction strategy to develop a reduced representation of the world (a model) that

helps in understanding the problem posed. New concepts emerge and take shape if

mental activity is focused on solving a particular problem. Reality can be represented

by a variety of models: a physical-scale model of a building, a simulation model of a

technical process, a mathematical model of quantum physics phenomena, or a formal

logical model of the security in a computer system. All these models are different

abstractions of reality, but should not be mistaken for reality itself. A model that

introduces a set of well-defined concepts and their interrelationships is called a

conceptual model. When proceeding from informal to formal modeling, a certain

order must be followed: a sound and stable conceptual model is a necessary

prerequisite for any more formal model. Formal models have the advantage of a

precise notation and rigorous rules of inference that support the automatic reasoning

about selected properties of the modeled system.

This section is aimed at developing a conceptual model to understand the temporal

behavior of a distributed real-time computer system. We introduce quantitative

measures about temporal properties where necessary.

Assumption Coverage: The essence of model building lies in accuracy for the

stated purpose, simplification and understandability. Given a set of models that

describe a given phenomenon, the model that requires the smallest number of

concepts and relationships to explain the issue involved is the preferred one. There is,

however, the danger of oversimplification, or of omitting a relevant property.

Information reduction, or abstraction, is only possible if the goal of the model-

building process has been well defined. Otherwise, it is hopeless to distinguish
between the relevant information that must be part of the model, and the irrelevant

information that can be discarded. All assumptions that are made during modeling in

order to achieve simplification, must be stated clearly as they define the range of

validity of the emerging model. The probability that the assumptions made in the

model building process hold in reality is called the assumption coverage [Pow95].

The assumption coverage limits the probability that conclusions derived from a

model are valid in the real world.

Two important assumptions must be made while designing a model of a fault-

tolerant real-time computer system: the load hypothesis and the fault hypothesis.

Every computer system has only a finite processing capacity. Statements on the

response time of a computer system can only be made under the assumption that the

load offered to the computer system is below a maximum load, called the peak load.

We call this important assumption the load hypothesis. A fault-tolerant computer

The Purpose of the Model

CHAPTER 4 MODELING REAL-TIME SYSTEMS 73

system is designed to tolerate all faults that are covered by the fault hypothesis, i.e.,

a statement about the assumptions that relate to the type and frequency of faults that

the computer system is supposed to handle. If the faults that occur in the real world
are not covered by the fault hypothesis, then, even a perfectly designed fault-tolerant

computer system will fail.

4.1.2 What is Relevant?

In this section, we discuss those temporal properties of the world that must be part of

the model of a distributed real-time computer system.

Notion of Physical Time: The progression of physical time is of central

importance in any real-time computer system. As mentioned before, many constants

of the laws of physics, e.g., the speed of light, are defined with respect to the

physical time TAI. If a different time-base is selected for the real-time system model,

then all these physical constants may become meaningless or must be redefined. We

assume that the omniscient external observer, with the precise reference clock z that

was introduced in Chapter 3, is present and that the real-time clocks within all nodes

are synchronized to a precision 3 that is sufficient for the given purpose, i.e., the

granularity is fine enough for the temporal attributes of the application under

consideration to be described correctly.

Durations of Actions: The execution of a statement constitutes an action. The

duration (or execution time) of a computational or communication action on a given

hardware configuration between the occurrence of the stimulus and the occurrence of

the associated response, is an important measure in the domain of time. Given an

action a, we distinguish the following four quantities that describe its temporal

behavior:

(i) Actual duration: (or actual execution time): given a concrete input data set x we
denote by dact(a,x) the number of time units of the reference clock z that occur

between the start of action a and the termination of action a.

(ii) Minimal duration: the minimal duration dmin(a) is the smallest time interval it
takes to complete the action a, quantified over all possible input data.

(iii) Worst-case execution time (WCET): the worst-case execution time dwcet(a) is
the maximum duration it may take to complete the action a under the stated

load and fault hypothesis, quantified over all possible input data.

(iv) Jitter: the jitter for an action a is the difference between the worst-case execution
time dwcet(a) and the minimal duration dmin(a).

In a later section of this chapter, the worst-case execution times and the jitter of data-

transformation and communication actions will be analyzed.

Frequency of Activations: We call the maximum number of activations of an

action per unit of time the frequency of activations. Every computational resource,

e.g., a node computer or a communication system, has a finite capacity determined

by the physical parameters of the resource. A resource can only meet its temporal

74 CHAPTER 4 MODELING REAL-TIME SYSTEMS

obligations if the frequency and the temporal distribution of the activations of the

resource are strictly controlled.

4.1 .3 What Is Irrelevant?

Which attributes of reality can be discarded without jeopardizing the purpose of the

model? Since a model is a reduced representation of reality, a clear description of the

attributes of the real world that are not relevant for the given purpose is of paramount

importance in model building. Introducing irrelevant details into a model complicates

the representation and the analysis of the given problem unnecessarily.

Issues of Representation: The focus of the conceptual model of a distributed

real-time system is on the temporal properties and on the meaning of real-time

variables, and not on their syntactic appearance, i.e., the representation of the values.

Consider, for instance, the example of a temperature measurement: at the physical

interface between the computer system and the temperature sensor, the temperature

can be represented by a 4-20 mA current signal, by a particular bit pattern generated

by an analog-to-digital (A/D) converter, or by a floating-point number within the

computer. We ignore all these low-level representational issues and assume an

abstract interface that provides an agreed standard representation that is uniform

within an entire subsystem, e.g., degrees Celsius for any temperature. Different

representations of the same value only matter at an interface between two different

subsystems. These representational differences can be hidden within a gateway

component that transforms the representation used in one subsystem to the
representation used in the other subsystem without changing the meaning, i.e., the

semantics, of the value under consideration.

Details of the Data Transformations: In a real-time system, there are many

programs that compute a desired result from given input data. Examples of such

programs are control algorithms, and the algorithms for the transformation of one
representation of information into another. These programs can be described on a

level of abstraction that considers the following aspects in the data domain along

with the functional intent of the program:

(i) The given input data,

(ii) The internal state of the program,

(iii) The intended results,

(iv) The modifications to the internal state of the program, and

(v) The resource requirements of the program, e.g., the memory size.

In the time domain, the worst-case execution time to derive the results from the input

data and the control signal that initiates the computation are considered relevant. The

internal program logic and the intermediate results of the program are treated as

irrelevant detail at the level of a conceptual model.

CHAPTER 4 MODELING REAL-TIME SYSTEMS 75

4.2 THE STRUCTURAL ELEMENTS

Viewed externally, a distributed fault-tolerant real-time application can be decomposed

into a set of communicating clusters (see also Figure 1.1). A computational cluster

can be further partitioned into a set of fault-tolerant units (FTUs) connected by a real-

time local area network. Each FTU consists of one or more node computers. Within

a node computer, a set of concurrently executing tasks performs the intended

functions. In the following section, we explain these building blocks of the model,

starting at the task level.

4.2.1 Task

A task is the execution of a sequential program. It starts with reading of the input

data and of the internal state of the task, and terminates with the production of the

results and updating the internal state. The control signal that initiates the execution

of a task must be provided by the operating system. The time interval between the

start of the task and its termination, given an input data set x, is called the actual
duration dact(task,x) of the task on a given target machine. A task that does not have

an internal state at its point of invocation is called a stateless task; otherwise, it is

called a task with state.

Simple Task (S-task): If there is no synchronization point within a task, we call

it a simple task (S-task), i.e., whenever an S -task is started, it can continue until its

termination point is reached. Because an S-task cannot be blocked within the body of

the task, the execution time of an S-task is not directly dependent on the progress of

the other tasks in the node, and can be determined in isolation. It is possible for the

execution time of an S-task to be extended by indirect interactions, such as by task

preemption by a task with higher priority.

Complex Task (C-Task): A task is called a complex task (C-Task) if it contains

a blocking synchronization statement (e.g., a semaphore operation "wait") within the

task body. Such a "wait" operation may be required because the task must wait until

a condition outside the task is satisfied, e.g., until another task has finished updating

a common data structure, or until input from a terminal has arrived. If a common data

structure is implemented as a protected shared object, only one task may access the

data at any particular moment (mutual exclusion). All other tasks must be delayed by

the "wait" operation until the currently active task finishes its critical section. The

worst-case execution time of a complex task in a node is therefore a global issue

because it depends directly on the progress of the other tasks within the node, or

within the environment of the node.

4.2.2 Node

A node is a self-contained computer with its own hardware (processor, memory,

communication interface, interface to the controlled object) and software (application

programs, operating system), which performs a set of well-defined functions within

the distributed computer system. A node is the most important abstraction in a

76 CHAPTER 4 MODELING REAL-TIME SYSTEMS

distributed real-time system because it binds software resources and hardware

resources into a single operational unit with observable behavior in the temporal

domain and in the value domain. A node that operates correctly accepts input
messages and produces the intended and timely output messages via the
communication network interface (CNI) introduced in Chapter 2. From the point of
view of the network, the function and timing of the node is characterized by the
messages it sends to, and receives from, the communication channels.

Structure of a Node: The node hardware consists of a host computer, a
communication network interface (CNI), and a communication controller as depicted
in Figure 2.2. The host computer comprises the CPU, the memory and the real-time
clock that is synchronized with the real-time clocks of all other nodes within the
cluster. The host computer shares the CNI with the communication controller. The
node software, residing in the memory of the host, can be divided into two data
structures: the initialization state (i-state) and the history state (h-state). The i-state is
a static data structure that comprises the reentrant program code and the initialization
data of the node, and can be stored in Read-only Memory (ROM). The h-state is the
dynamic data structure of the node that changes its contents as the computation
progresses, and must be stored in read/write memory (RAM). In an embedded real-
time system, it is important to distinguish between the data structures that can be
stored in ROM and those that must be allocated to RAM, because the VLSI
implementation of a ROM memory cell requires considerably less silicon die area
than that of a RAM memory cell. Furthermore, storage of a data element in a ROM
cell is more robust with respect to disturbances caused by transient faults than is the
storage of a data element in a RAM cell.

In many applications, a node of a distributed computer system is the smallest

replaceable unit (SRU) that can be replaced in case of a fault. It is therefore important
that the interfaces of a node be precisely specified, both in the temporal domain and
in the value domain, so that any malfunction of the node can be diagnosed promptly.

The execution of the concurrently executing tasks within a node is controlled by the
node operating system. If a node supports an event-triggered communication system,
then the control of the communication system, i.e., the decisions as to when a
message must be sent, is determined by the host software. If a node supports a time-
triggered communication system, then the communication system acts
autonomously. The data structure that specifies when a message must be sent is
stored in the memory of the communication controller.

4.2.3 Fault-Tolerant Unit (FTU)

A fault-tolerant unit (FTU) is an abstraction that is introduced for implementing fault
tolerance by active replication. An FTU consists of a set of replicated nodes that are
intended to produce replica determinate result messages, i.e., the same results at
approximately the same points in time. The issue of replica determinism is discussed
in detail in Section 5.6.

CHAPTER 4 MODELING REAL-TIME SYSTEMS 77

In case one of the nodes of the FTU produces an erroneous result, a judgment
mechanism which is provided detects the erroneous result, and ensures that only
correct results are delivered to the client of the FTU. For example, a voter that takes
three independently computed results as inputs and delivers as output a result that is
the majority (two) of the input messages, can detect and mask one error in the value
domain. From the logical and temporal point of view, an FTU acts as a single node.

4.2.4 Computational Cluster

A computational cluster comprises a set of FTUs that cooperate to perform the
intended fault-tolerant service for the cluster environment. The cluster environment
consists of the controlled object, the operator, and other computational clusters. The
interfaces between a cluster and its environment are formed by the gateway nodes of
the cluster. Computational clusters can be interconnected by the gateway nodes in the
form of a mesh network. The model does not require a hierarchical relationship
among the clusters, although a hierarchy of clusters can be introduced, if desired. A
uniform representation of the information within a cluster simplifies the application
software within the nodes.

4.3 INTERFACES

The most important activity in the design of a large real-time system architecture is
the layout and the placement of the interfaces, since architecture design is primarily
interface design. An interface is a common boundary between two subsystems. A
correctly designed interface provides understandable abstractions, to the interfacing
partners, which capture the essential properties of the interfacing subsystems and hide
the irrelevant details. An interface between two subsystems of a real-time system can
be characterized by:

(i) The control properties, i.e., the properties of the control signals crossing the
interface, e.g., which task must be activated if a particular event happens.

(ii) The temporal properties, i.e., the temporal constraints that must be satisfied by
the control signals and by the data that cross the interface.

(iii) The functional intent, i.e., the specification of the intended functions of the
interfacing partner.

(iv) The data properties, i.e., the structure and semantics of the data elements
crossing the interface.

Example: The functional intent of a node in a plant automation system is to
determine whether the exhaust fumes in a smokestack meet the environmental
standards, If the environmental standards change (perhaps because a new law has been
passed), the parameters in the node, i.e., the concrete function implemented by the
node, must be changed. The functional intent of the node, however, remains
unchanged. The functional intent is thus at a higher level of abstraction than a
function.

78 CHAPTER 4 MODELING REAL-TIME SYSTEMS

In many cases, the interfacing partners use differing syntactic structures and
incompatible coding schemes to represent the information that must cross the
interface. In such situations an intelligent interface component must be placed
between the interfacing partners to transform the differing representations of the
information. An intelligent interface component is sometimes called a resource

controller (Figure 4.1). A resource controller has two interfaces to the two interacting
subsystems. The resource controller transforms the information from the
representation used in one subsystem to that used in the other subsystem. In a
computer network, a gateway acts like a resource controller.

Figure 4.1: Resource controller transforming information.

Example: Consider the interface between a host computer (subsystem one) and a
storage subsystem, such as a disk (subsystem two). The disk controller acts as a
resource controller with two interfaces. At interface one, the disk controller
accepts/delivers data from the host in a standard format via direct memory access
(DMA). At interface two, the disk controller controls the specific electro-mechanical
devices within the given disk system, generates and checks the parity of the data, and
executes the input/output commands at precise moments in time.

Figure 4.2: Generalized man-machine interface versus
specific man-machine interface.

4.3.1 World and Message Interfaces

Example : Let us look at another important example of an interface, the man-
machine interface (MMI), in order to learn to distinguish between a concrete world

interface and an abstract message interface. In a distributed computer system, we can
assume that the man-machine subsystem is an encapsulated dedicated subsystem with

CHAPTER 4 MODELING REAL-TIME SYSTEMS 79

two interfaces: one, the specific man-machine interface (SMMI –concrete world
interface), between the machine and the human operator, the other, the generalized

man-machine interface (GMMI –abstract message interface), the interface between the
man-machine subsystem and the rest of the distributed computer system
(Figure 4.2). From the point of view of the conceptual modeling of an architecture,
we are only interested in the temporal properties of the messages at the GMMI. An
important message is sent to the GMMI of the man-machine subsystem, and is
somehow relayed to the operator's mind (across the SMMI in Figure 4.2). A
response message from the operator (via the SMMI) is expected within a given time
interval at the GMMI. All intricate issues concerning the representation of the
information contained in the important message at the SMMI are irrelevant from the
point of view of conceptual modeling of the temporal interaction patterns between
the operator and the cluster. The encapsulated man-machine subsystem can thus be
seen as a resource controller transforming the information that is exchanged between
two different subsystems. If the purpose of our model were the study of human
factors governing the specific man-machine interaction, then the form and attributes
of the information representation at the SMMI (e.g., shape and placement of
symbols, color, and sound) would be relevant, and could not be disregarded.

Table 4.1 compares the characteristics of world- and message interfaces:

Table 4.1: Concrete world interface versus abstract message interface.

It is important to verify that subsystems do not interact via hidden interfaces.
Uncontrolled interactions among subsystems via such hidden interfaces can invalidate
the arguments which are the basis for reasoning about the correctness of a
composition. An example of a hidden interface is given in Section 5.5.1.

The information representation within a computational cluster should be uniform at
the message interfaces within a cluster. This may require that a resource controller be
placed between the external world interface of a cluster and the internal message
interface (Figure 4.3). The resource controller hides the concrete world (physical)
interface of the real-world devices from the standardized message formats within the
computational cluster.

80 CHAPTER 4 MODELING REAL-TIME SYSTEMS

Figure 4.3: World and message interface in a distributed system.

Standardized Message Interfaces

To improve the compatibility between systems designed by different manufacturers,
and to enhance the interoperability of I/O devices, some international standard
organizations have attempted to standardize message interfaces. Two such
standardization efforts are the MAP Manufacturing Message Specification and the
SAE J 1587 Message Specification.

MAP Manufacturing Message Specification (MAP MMS): The MAP
MMS [Rod89, p.83] is an example of a standardized message interface for shop floor
equipment in a manufacturing environment. In the MMS, standard virtual
manufacturing devices, such as a virtual drill, are specified, and a set of messages that
are required to control these devices and to collect the shop floor information produced
by these devices are defined. Any real device that conforms to this standard can be
controlled by standard MMS messages. The manufacturer of a real device must
implement a resource controller that transforms the standard MMS messages to the
format required by the interfacing hardware.

SAE J 1587 Message Specification: The Society of Automotive Engineers
(SAE) has standardized the message formats for heavy duty vehicle applications in the
J 1587 Standard [SAE94]. This standard defines message names and parameter names
for many data elements that occur in the application domain of heavy vehicles.
Besides data formats, the range of the variables and the update frequencies are also
covered by the standard.

4.3.2 Temporal Obligation of Clients and Servers

Let us now analyze the temporal performance of an interaction across an interface by
making use of the client-server model [Kop96]. In the client-server model, a request
(a message) from a client to a server causes a response from the server at a later time.
This response could be a state change of the server and/or the transmission of a

CHAPTER 4 MODELING REAL-TIME SYSTEMS 81

response message to the client. Three temporal parameters characterize such a client-
server interaction:

(i) The maximum response time, RESP, that is expected by the client, and stated
in the specification,

(ii) The worst-case execution time, WCET, of the server that is determined by the
implementation of the server, and

(iii) The minimum time, MINT, between two successive requests by the client.

It is important to note that the WCET is in the sphere of control of the server, and
that the minimum time between two successive requests, MINT, is in the sphere of
control of the client. In a hard real-time environment, the implementation must
guarantee that the condition

WCET < RESP

holds, under the assumption that the client respects its obligation to keep a
minimum temporal distance MINT between two successive requests.

If the condition WCET<<RESP holds, then, in the given execution environment the
performance of the server is orders of magnitude faster than required by the particular
application under worst-case conditions, i.e., the hardware is "over dimensioned"; in
such a case performance concerns are not an issue. However, this situation is
exceptional in embedded systems because of the cost pressure in a market economy.
If WCET is in the same order of magnitude as RESP, then careful analysis of the
temporal properties of the server object is required. It must be ensured that the server
will always meet the temporal requirements, provided the client observes its
obligation to issue requests only at a rate less than 1/MINT.

Figure 4.4: Interfaces of a node.

Typically, a node of a distributed computer system has two interfaces (Figure 4.4). It
provides services to the network across the network interface, and to the controlled
object across the process interface. If the service activation at these interfaces is not
in the sphere of control of the node, timely operation of the node is only possible if
the clients fulfill their obligations concerning frequency of service activations. The
failure of a client to meet its obligation, e.g., by the generation of too many
interrupts at the process interface, can result in the consequent failure of the node.

82 CHAPTER 4 MODELING REAL-TIME SYSTEMS

4.4 TEMPORAL CONTROL VERSUS LOGICAL CONTROL

4.4.1 The Rolling Mill Example Revisited

Let us reconsider the rolling mill example of Figure 1.9 of Chapter 1, and specify a
condition between measured variables that must be monitored by the alarm
monitoring node. Assume that pressures p1, p2, and p3, between the rolls of the three

drives are measured by the three controller nodes and is sent to the man-machine
interface (MMI) node for checking the following alarm condition:

when ((p1 < p2)∧ (p2 < p3))

then everything ok

else raise pressure alarm;

At a first glance, this looks like a reasonable specification. Whenever the pressure
between the rolls does not satisfy the specified condition, a pressure alarm must be
raised.

During the implementation of this specification, four different S-tasks in four
different nodes must be designed. The following questions concerning the activation
of these tasks arise:

(i) What is the maximum tolerable time difference between the occurrence of the
alarm condition in the controlled object and the triggering of the alarm at the
MMI? Because the communication among the nodes takes a finite amount of
time, some time difference is unavoidable!

(ii) What are the maximum tolerable time differences between the three pressure
measurements in the different controller nodes? If these time differences are not
properly controlled, false alarms will be generated or important alarms will be
missed.

(iii) When do we have to activate the pressure measurement tasks at the drive
controller nodes?

(iv) When do we have to activate the alarm monitoring task at the alarm monitoring
node (the MMI node in Figure 1.9)?

Because these questions are not answered by the given specification, it is evident that
this specification lacks precise information concerning the requirements in the time
domain, The temporal dimension is buried in the ill-specified semantics of the when

statement. The when statement is intended to serve two purposes: it is required to
specify

(i) The point in time when the alarm condition must be raised, and

(ii) The conditions in the value domain that must be monitored.

It thus intermingles two separate issues, the behavior in the value domain and the
behavior in the time domain. A clean distinction between these two issues requires a
careful definition of the concepts of logical and temporal control.

Logical control is concerned with the control flow within a task that is determined by
the given program structure and the particular input data, in order to achieve the

CHAPTER 4 MODELING REAL-TIME SYSTEMS 83

desired data transformation. In the above example, the evaluation of the branch
condition and the consequent selection of one of the two alternatives is an example of
logical control .

Temporal control is concerned with determining the points in time when a task must
be activated, or when a task must be blocked, because some conditions outside the
task are not satisfied at a particular moment. In the above example, the decision
regarding the instant at which the alarm monitoring task is activated is an issue for
temporal control.

The only temporal control issue in an S-task is the determination of the moment
when this S-task must be activated. Once it has been activated, it will run till its
completion within its WCET.

A C-task blends issues of logical control with issues of temporal control. An explicit
synchronization statement, such as a "wait" on a semaphore variable, can delay the
program execution until a temporal condition outside the task under consideration is
satisfied. As mentioned before, it is impossible to calculate the WCET of a C-task
without analyzing the temporal properties of the complete system of interacting
tasks.

Synchronous real-time languages, such as LUSTRE [Hal92], ESTEREL [Ber85], and
SL [Bou96] distinguish cleanly between logical control and temporal control. Their
computational model assumes that a task, once activated by an external event that can
be the tick of a clock (temporal control), finishes its computation immediately, i.e.,
that program outputs are synchronous with the inputs. This model presupposes that
the WCET is smaller than the minimum time interval between external events.

4.4.2 Event-Triggered versus Time-Triggered

In the following subsection the concepts of event-triggered and time-triggered
activation that were introduced in Section 2.2, are refined and extended beyond the
communication system. A temporal control signal for the activation of a task in a
node can arise from one of the following two sources:

(i) The control signal is derived from a significant state change, an event, in the
environment or within the computer system. Examples of such significant state
changes are the depressing of a push button by an operator, the activation of a
limit switch, the arrival of a new message at a node, or the completion of a task
within a node. We call a control signal that is derived from a significant state
change an event trigger. A system where all the control signals are derived from
event triggers is called an event-triggered (ET) system.

The control signal is derived from the progression of real-time. Whenever the
real-time clock within a node reaches a preset value specified in a scheduling
table, a temporal control signal is generated. We call such a control signal that
is derived from the progression of time a time trigger. A system where all the
control signals are derived from time triggers is called a time-triggered (TT)

system.

(ii)

84 CHAPTER 4 MODELING REAL-TIME SYSTEMS

Example: The design of a computer system controlling a set of elevators in a high-
rise building can be event-triggered or time-triggered. In an event-triggered
implementation, every press of the lift-call button causes an interrupt in the
computer system, and activates a task that reschedules the lifts to service the request.
In a time-triggered implementation, every press of the lift-call button sets a local
memory element in the lift-call button. The memory elements of all the lift-call
buttons are periodically sampled with a sampling period of, say, 500 msec and then
reset by the computer system. After a complete sampling cycle, the lift scheduler is
activated to calculate a new schedule to service all requests. If a user becomes
impatient if the lift does not arrive and presses the lift-call button again, the different
implementations will handle the redundant call-button pushes differently. The event-
triggered implementation will relay additional interrupts to the computer system,
while the time-triggered implementation will not recognize the redundant call-button
signals as long as the memory elements are set.

There are many real-time systems that use time triggers as well as event triggers.
However, most real-time system architectures tend to favor either on one or the other:
control signals are either predominantly event triggers or predominantly time
triggers. The main advantage of ET systems is their flexibility. The main advantage
of TT systems is their predictability.

4.4.3 Interrupts

In an ET system, the significant external event triggers are often relayed to the
computer system by means of the interrupt mechanism. An interrupt is an
asynchronous hardware-supported request for a specific task activation caused by an
event external (i.e., outside the node) to the currently active computation. This
definition of an interrupt does not include an exception, i.e., a synchronous break in
the control flow caused by a condition within the task.

Figure 4.5: Worst case CPU capacity needed for interrupt housekeeping.

Overhead of an Interrupt: Whenever the interrupt mechanism is enabled, and an
interrupt occurs, the execution of the current task is preempted, and a context switch
to the interrupt handler is enforced by the hardware. To reduce the size of the hardware
context that must be saved after an interrupt, the interrupt condition, i.e., the voltage
level of an external signal line, is only checked at well-defined points during a

CHAPTER 4 MODELING REAL-TIME SYSTEMS 85

hardware instruction, or at the end of the hardware instruction. After the termination
of the interrupt handler, another context switch is initiated to either continue the
preempted task, or to hand control over to an interrupt service task. These context
switches require a worst-case administrative overhead, WCAO. Every interrupt
reduces the CPU capacity that is available to the application by an amount up to the
size of the WCAO, as shown in Figure 4.5. The administrative overhead is required
even if the interrupt handler decides that the interrupt was erroneous, and no
application task needs to be activated.

If the interrupt frequency reaches the value 1/WCAO, then, no CPU capacity may be
left over for the application tasks. It is therefore of paramount importance to limit
the frequency of interrupts, particularly if the interrupts could be erroneous. This can
be difficult, because the source of the interrupt is outside the sphere of control, SOC,

of the considered node. Hence, it cannot be known a priori whether a pending
interrupt is in error, or whether it carries relevant event information that must not be
lost.

Table 4.2: Task activation by interrupt versus trigger task.

4.4.4 Trigger Task

In a TT system, control always remains within the computer system. To recognize
significant state changes outside the computer, a TT system must regularly capture
the state of the environment by a trigger task (Table 4.2). A trigger task is a periodic
time-triggered task that evaluates a trigger condition on a set of temporally accurate
real-time variables. The result of a trigger task can be a control signal that activates
another application task. Since the states, either external or internal, are sampled at
the frequency of the trigger task, only those states with a duration greater than the
sampling period of the trigger task are guaranteed to be observed. Short-lived states,
e.g., the push of a button, must be stored in a memory element outside the computer
(e.g., in the interface) for a duration that is longer than the sampling period of the
trigger task (see also Section 9.3 on sampling).

Overhead of a Trigger Task: The periodic trigger task generates an
administrative overhead in a TT system. The period of the trigger task must be

86 CHAPTER 4 MODELING REAL-TIME SYSTEMS

smaller than the laxity (i.e., the difference between deadline and execution time) of an
RT transaction that is activated by an event in the environment. If the laxity of the
RT transaction is very small (<1msec), then, the overhead associated with a trigger
task can become intolerable [Po195b].

4.5 WORST-CASE EXECUTION TIME

A deadline for completing an RT transaction can only be guaranteed if the worst-case
execution times (WCET) of all the application tasks that are part of the transaction
are known a priori. The WCET of a task is an upper bound for the time between task
activation and task termination. It must be valid for all possible input data and
execution scenarios of the task, and should be a tight bound.

In addition to the knowledge about the WCET of the application tasks, we must find
an upper bound for the delays caused by the administrative services of the operating
system, the worst-case administrative overhead (WCAO). The WCAO includes all
administrative delays that affect an application task but are not under the direct
control of the application task (e.g., those caused by context switches, scheduling,
cache reloading because of task preemption by interrupts or blocking, and direct
memory access).

This section starts with an analysis of the WCET of a nonpreemptive simple task.
We then proceed to investigate the WCET of a preemptive simple task before
looking at the WCET of complex tasks and, finally, we discuss the state of the art
regarding the timing analysis of real-time programs.

4.5.1 WCET of S-Tasks

The simplest task we can envision is a single sequential task that runs on dedicated
hardware without preemption and without requiring any operating system services.
The WCET of such a task depends on

(i) the source code of the task,

(ii) the properties of the object code generated by the compiler, and

(iii) the characteristics of the target hardware.

In this section, we investigate the analytical construction of a tight worst-case
execution time bound of such a simple task.

Source Code Analysis: The first problem concerns the calculation of the WCET
of a program written in a higher-level language, under the assumption that the
maximum execution times of the basic language constructs are known. In general,
the problem of determining the WCET of an arbitrary sequential program is
unsolvable and is equivalent to the halting problem for Turing machines. Consider,
for example, the simple statement that controls the entry to a loop:

S: while (exp)
do loop;

CHAPTER 4 MODELING REAL-TIME SYSTEMS 87

It is not possible to determine a priori after how many iterations, if at all, the
Boolean expression exp will evaluate to the value FALSE, and when statement S
will terminate, In order that the determination of the WCET be a tractable problem
there are a number of restrictions that must be met by a real-time program, and these
are listed by Puschner and Koza [Pus89] as follows:

(i) Absence of unbounded control statements at the beginning of a loop,

(ii) Absence of recursive function calls, and

(iii) Absence of dynamic data structures.

The WCET analysis concerns only the temporal properties of a program. The
temporal characteristics of a program can be abstracted into a WCET bound for every
program statement using the known WCET bound of the basic language constructs.
For example, the WCET bound of a conditional statement

S: if (exp)
then S1

else S2;

can be abstracted as

T(S) = max (T(exp) + T(S1),T(exp) + T(S2))

where T(S) is the maximum execution time of statement S, with T(exp), T(S1),
and T(S2) being the WCET bounds of the respective constructs. Such a formula for

reasoning about the timing behavior of a program is called a timing schema [Sha89].

The WCET analysis of a program which is written in a high-level language must
determine which program path, i.e., which sequence of instructions, will be executed
in the worst-case scenario. The longest program path is called the critical path.

Because the number of program paths normally grows exponentially with the
program size, the search for the critical path can become intractable if the search is
not properly guided and the search space is not reduced by excluding infeasible paths.

The WCET analysis problem can be transformed into an integral linear-programming
problem [Pus93, Li95] to find the maximum execution time of a task, under the
constraints dictated by the program structure and by additional semantic information
about the problem domain expressed by the programmer. The program structure

constraints can be derived automatically from the program control flow graph. The
program functionality constraints that help to tighten the WCET bound must be
provided by the programmer, and can be expressed in the form of annotations to the
source program that can be processed by a worst-case execution-time analysis tool.

Compiler Analysis: The next problem concerns the determination of the
maximum execution time of the basic language constructs of the source language
under the assumption that the maximum execution times of the machine language
commands are known. For this purpose, the code generation strategy of the compiler
must be analyzed, and the timing information that is available at the source code
level must be mapped into the object code representation of the program so that an
object-code timing analysis tool can make use of this information. Vrchoticky
[Vrc94] proposes the construction of a timing tree during compilation. This timing

88 CHAPTER 4 MODELING REAL-TIME SYSTEMS

tree contains all the information necessary to calculate the WCET of the compiled
program, and presents the results of the analysis to the programmer as statement-
level annotations of the source program. The effects of register allocation, code
optimization, and other decisions made during the compilation process must be
considered in the WCET analysis.

Microarchitecture Timing Analysis: The final problem concerns the
determination of the worst-case execution time of the commands of the target
hardware. If the processor of the target hardware has fixed instruction execution times,
then, the duration of the hardware instructions can be found in the hardware
documentation and can be retrieved by an elementary table look-up. Such a simple
approach does not work if the target hardware is a modern RISC processor with
pipelined execution units and instruction/data caches [Lim94]. While these
architectural features result in significant performance improvements, they also
introduce a high level of unpredictability . Dependencies among instructions can cause
pipeline hazards, and cache misses will lead to a significant delay of the instruction
execution. To make things worse, these two effects are not independent.

[Hea95] has published a method (Figure 4.6) for the a priori analysis of the WCET
of code segments that are executed on machines with pipelines and instruction caches.

Figure 4.6: Microarchitecture timing analysis.

The relevant control-flow information of the program is assembled during the
compilation and used to classify each instruction's caching behavior. This
information is then used by the timing analysis tool to arrive at a WCET for each
program segment, with due consideration of the integrated effects of caching and
pipelining. An experimental validation of this method on a number of test programs
executing on a SPARC architecture has shown that the WCET bound calculated by
this method is at most 100% above the measured bound. The worst deviation
between the measured and the estimated WCET execution times is shown by a sort
program that contains many data-dependent loop iterations. If the program does not
contain data-dependent loop iterations, as in a typical control algorithm, then, the
calculated WCET bound is in closer agreement with the measured value. Similar
results have been published by [Lim94] who investigated the WCET of the Intel
i960KB processor.

CHAPTER 4 MODELING REAL-TIME SYSTEMS 89

4.5.2 Preemptive S-Tasks

If a simple task (S task) is preempted by another independent task, e.g., a higher
priority task that must service a pending interrupt, then, the execution time of the S-
task under consideration is extended by three terms:

(i) The WCET of the interrupting task (task B in Figure 4.7),

(ii) The WCET of the operating system required for context switching, and

(iii) The time required for reloading the instruction cache and the data cache of the
processor whenever the context of the processor is switched.

We call the sum of the worst-case delays caused by the context switch (ii), and the
cache reloading (iii) the Worst-case Administrative Overhead (WCAO) of a task
preemption. The WCAO is an unproductive administrative overhead that is avoided if
task preemption is forbidden.

Figure 4.7: Worst-case administrative overhead (WCAO) of a task preemption.

The additional delay caused by the preemption of task A by task B is the WCET of
the independent task B and the sum of the two WCAOs for the two context switches
(shaded area in Figure 4.7). The times spent in Microarchitecture-1 and
Microarchitecture-2 are the delays caused by cache reloading. The Microarchitecture-2
time of the first context switch is part of the WCET of task B, because task B is
assumed to start on an empty cache. The second context switch includes the cache
reload time of task A, because in a nonpreemptive system, this delay would not
occur. In many applications with modern processors, the microarchitecture delays can
be the most significant terms determining the cost of a task preemption because the
WCET of the interrupting task is normally quite short.

4.5.3 WCET of Complex Tasks

We now turn to the WCET analysis of a preemptive complex task (C-task) that
accesses protected shared objects. The WCET of such a task depends not only on
performance of the task itself, but also on the behavior of other tasks and the
operating system within a node. WCET analysis of a C-task is therefore not a local
problem of a single task, but a global problem involving all the interacting tasks
within a node.

90 CHAPTER 4 MODELING REAL-TIME SYSTEMS

In addition to the delays caused by the task preemption (which was analyzed in the
previous section), an additional delay that originates from the direct interactions
caused by the intended task dependencies (mutual exclusion, precedence) must be
considered. In the last few years, progress has been made in coping with the direct
interactions caused by the intended task dependencies–eg., access to protected shared
objects controlled by the priority ceiling protocol [Sha94]. This topic will be
investigated in Section 11.3.3 on the scheduling of dependent tasks.

4.5.4 State of Practice

The previous discussion establishes that the analytic calculation of a tight WCET
bound of an S-task which does not make use of operating system services is possible
only under restricting assumptions. It requires an annotated source program that
contains programmer-supplied application-specific information to ensure that the
program terminates, and to achieve a tight WCET bound. Furthermore, the compiler
must map this application-specific information into the object code so that a WCET
analysis of the object code is possible. At present, the systematic analysis of all the
effects that determine the WCET of C-tasks is still in its infancy. The analytic
determination of a tight WCET bound between a stimulus to, and a response from, a
node with a RISC processor is beyond the present state of the practice.

However, since bounds for the WCET of the tasks are needed in almost all hard real-
time applications, this important problem is solved by the current practice of
combining a number of diverse techniques:

(i) The measurement of an implementation (tasks, operating system service times)
to gather experimental WCET data.

(ii) Use of a restricted architecture that reduces the interactions among the tasks and
facilitates the a priori analysis of the control structure. The number of explicit
synchronization actions that require context switches and operating system
services is minimized.

(iii) The analysis of subproblems (e.g., the maximum execution time analysis of
the source program) so that an effective set of test cases biased towards the
worst-case execution time can be generated mechanically.

(iv) The extensive testing of the complete implementation to validate the
assumptions and to measure the safety margin between the assumed WCET and
the actual measured execution times.

The state of current practice is not satisfactory, because it is difficult to ascertain that
the assumed WCET is a guaranteed upper bound of the actual WCET. Further work
is needed in all areas of timing analysis to come to tight analytical bounds of the
WCET.

CHAPTER 4 MODELING REAL-TIME SYSTEMS 91

4.6 THE HISTORY STATE (H-STATE)

In the Section 4.2.2, the concept of the h-state was introduced as "the dynamic data
structure of the node that undergoes change as the computation progresses". In this
section, this important concept of the h-state is analyzed in further detail.

4.6.1 The Pocket Calculator Example

Let us introduce the example of a pocket calculator to investigate the concept of the
h-state. An operand, i.e., a number of keyboard digits, must be entered into the
calculator before the selected operator, e.g., a key for the trigonometric function sine,

can be pressed to initiate the computation of the selected function. As soon as the
computation terminates, the result is shown on the calculator display. If we consider
the process of computation to be an atomic operation, and observe the system
immediately before or after the execution of this atomic operation, then, the h-state
of this simple calculator device is empty at the selected points of observation.

Figure 4.8: Model of a pocket calculator.

Let us now observe the device (shaded box in Figure 4.8) during the interval between
the start of the computation and the end of the computation. If the device is equipped
with the appropriate sensors, a number of intermediate results that are stored in the
local memory of the pocket calculator can be observed during the series expansion of
the sine function. If the computation is halted at a point between start and end, the
contents of the program counter and all memory cells that hold the intermediate
results form the h-state at this chosen moment. At the end of the computation, the
contents of these intermediate memory cells are no longer relevant, and the h-state
becomes empty again.

Figure 4.9: Expansion and contraction of the h-state during a computation.

The h-state at any point of interruption can be defined as the contents of the program
counter and of all data structures that must be loaded into a "virgin" hardware device

92 CHAPTER 4 MODELING REAL-TIME SYSTEMS

to resume the operation at the point of interruption. Figure 4.9 depicts a typical
expansion and contraction of the h-state during a computation.

Let us now analyze the h-state of a pocket calculator used to sum up a set of
numbers. When entering a new number, the sum of the previously entered numbers
must be stored in the device. If we interrupt the work after having added a subset of
numbers and continue the addition with a new calculator, we first have to input the
intermediate result of the previously added numbers. At the user level, the h-state
consists of the intermediate result of the previous additions. At the end of the
operation, we receive the final result and clear the calculator. The h-state is empty
again.

From this simple example we can conclude that the size of the h-state depends on the
level of abstraction, and the associated point in time chosen for the observation of the
system. If the granularity of observations is increased, and if the observation points
are selected immediately before or after an atomic operation at the chosen level of
abstraction, then, the size of the h-state can be reduced. A small h-state at the
reintegration point simplifies the reintegration of a failed component.

4.6.2 Ground State

We define the ground state of a node in a distributed system at a given level of
abstraction as a state where no task is active and where all communication channels
are flushed, i.e., there are no messages in transit [Ahu90]. Consider a node that
contains a number of concurrently executing S-tasks that exchange messages with
each other and with the environment of the node. Let us choose a level of abstraction
that considers the execution of an S-task as an atomic action. If the execution of the
tasks is asynchronous, then, the situation depicted in the upper section of Figure
4.10, can arise; at every point in real time, there is at least one active task, thus
implying that there is no point in real time when the ground state of the node can be
defined.

Figure 4.10: Task executions: without (above), and with (below) ground state.

In the lower part of Figure 4.10, there is a point in time where no task is active and
all the channels are empty, i.e., where the system is in the ground state. If a node is
in the ground state, then the h-state of the node is contained in the visible data
structures and the program counter. The reintegration of a node after a failure is

CHAPTER 4 MODELING REAL-TIME SYSTEMS 93

simplified if a node periodically visits a ground state that can be used as a
reintegration point.

POINTS TO REMEMBER

• A model that introduces a set of well-defined concepts and their interrelationships
is called a conceptual model.

The probability that the assumptions made in the model building process hold in
reality is called the assumption coverage. The assumption coverage limits the
probability that conclusions derived from a model are valid in the real world.

Statements about the response time of a computer system can only be made
under the assumption that the load offered to the computer system is below a
maximum load, called the peak loud (load hypothesis).

If the faults that occur in the real world are not covered by the fault-hypothesis,

then, even a perfectly designed fault-tolerant computer system will fail.

Different representations of the same value only matter at an interface between
two different subsystems.

If there is no synchronization point within a task, we call it a simple task (S-

task), i.e., whenever an S-task is started, it can continue until its termination
point is reached.

• A task is called a complex task (C-Task) if it contains a blocking
synchronization statement (e.g., a semaphore operation "wait") within the task
body.

A node is the most important abstraction in a distributed real-time system
because it binds software resources and hardware resources into a single
operational unit with observable behavior in the temporal domain and in the
value domain.

An interface is a common boundary between two subsystems. It provides
understandable abstractions to the interfacing partners. These abstraction capture
the essential properties of the interfacing subsystems and hide the irrelevant
details.

The information representation within a computational cluster should be uniform
at the message interfaces within a cluster.

If the service activation at an interface is not in the sphere of control of the node,
i.e., it is in the sphere of control of the client outside the node, then, a timely
service of the node is only possible if the client fulfills its obligations
concerning the frequency of service activations.

Logical control is concerned with the control flow within a task that is
determined by the given program structure and the particular input data to achieve
the desired data transformation.

•

•

•

•

•

•

•

•

•

•

94 CHAPTER 4 MODELING REAL-TIME SYSTEMS

• Temporal control is concerned with the determination of the points in time when
a task must be activated or when a task must be blocked, because some
conditions outside the task are not satisfied at a particular moment.

A system where all control signals are derived from event triggers is called an
event-triggered (ET) system.

A system where all control signals are derived from time triggers is called a
time-triggered (TT) system.

If the interrupt frequency reaches the value 1/WCOA then no CPU capacity may
be left for the application tasks. It is therefore of paramount importance to limit
the frequency of interrupts, particularly if they can be erroneous.

A trigger task is a periodic time-triggered task that evaluates a trigger condition
on a set of temporally accurate real-time variables.

The WCET of an S-task depends on the source code of the task, the properties of
the object code generated by the compiler, and the characteristics of the target
hardware.

The WCET of a C-task depends not only on performance of the task itself, but
also on the behavior of other tasks and the operating system within a node.

The h-state at any point of interruption can be defined as the contents of the
program counter and of all data structures that must be loaded into a "virgin"
hardware device to continue the operation at the point of interruption.

The ground state of a node in a distributed system at a given level of abstraction
is a state where no task is active and where all communication channels are
flushed, i.e., there are no messages in transit.

•

•

•

•

•

•

•

•

BIBLIOGRAPHIC NOTES

The following two books, dealing with topics outside the field of computing, contain
a wealth of information on modeling and design: "Design Methods" by Jones [Jon78]
and "Systems Architecting" by Rechtin [Rec91]. Powell has investigated the
important problem of assumption coverage [Pow95]. The question as to whether hard
real-time systems should be event-triggered or time-triggered has been a topic of
intense debate over the past ten years [Lam84], [Lel90], [Agn91], [Xu90], [Loc92],
[Kop93b], and [Tis95]. The WCET of programs has been investigated by [Kli86] in
the context of the EUCLID project. Puschner [Pus89] tried to improve the execution
bounds by using programmer-supplied information and continued the work in the
context of his thesis [Pus93], where he transformed the WCET problem into a linear
programming problem. A similar approach has been followed independently by
[Li95]. The problem of investigating the effects of the microarchitecture (caching,
pipelining) is a topic of extensive research by a number of people [Vrc94], [Li95],
[Hea95].

CHAPTER 4 MODELING REAL-TIME SYSTEMS 95

REVIEW QUESTIONS AND PROBLEMS

4.1 What is assumption coverage? How can you determine a quantitative value for
the assumption coverage? What do we mean by load hypothesis and fault

hypothesis ?

4.2 List the properties that must be part of an architectural model of a real-time
system and the properties that can be disregarded in such a model?

4.3 Describe the structure of a node? Why is it important to distinguish between the
i-state and the h-state of a node in an embedded system?

4.4 Describe the elements of an interface. What is the difference between functional

intent and function? What are the characteristics of world interfaces and message

intefaces? Give examples of standardized message interfaces.

In a real-time application the information is represented in many different
syntactic forms, e.g., as a 4-20 mA signal on a wire, in the form of an icon on
a computer screen or in the from of a particular bit pattern within the computer.
How can we arrive at a uniform information representation within a cluster?

4.6 What are the temporal obligations of clients and servers at a client-server
interface in a real-time system?

4.7 What is the difference between temporal control and logical control?

4.8 Assume that the pressures p1 and p2 between the first two pairs of rolls in
Figure 1.9 are measured by the two controller nodes and sent to the man-
machine interface (MMI) node for verifying the following alarm condition:

4.5

when (p1 < p2)
then everything ok

else raise pressure alarm;

The rolling mill is characterized by the following parameters: maximum
pressure between the roles of a stand=1000 kp cm-2 [kp is kilopond], absolute
pressure measurement error in the value domain=5 kp cm-2, maximum rate of
change of the pressure=200 kp cm-2 sec-1. It is required that the error due to the
imprecision of the points in time when the pressures are measured at the
different rolls should be of the same order of magnitude as the measurement
error in the value domain, i.e., 0.5% of the full range. The pressures must be
continuously monitored, and the first alarm must be raised by the alarm
monitor within 200 msec (at the latest) after a process has possibly left the
normal operating range. A second alarm must be raised within 200 msec after
the process has definitely entered the alarm zone.

(a) Assume an event-triggered architecture where each node contains a local real-
time clock, but where no global time is available. The minimum time dmin for
the transport of a single message by the communication system is 1 msec.
Derive the temporal control signals for the three tasks.

(b) Assume a time-triggered architecture where the clocks are synchronized with
a precision of 10 µ sec. The time-triggered communication system is
characterized by a TDMA round of 10 msec. The time for the transport of a

96 CHAPTER 4 MODELING REAL-TIME SYSTEMS

single message by the communication system is 1 msec. Derive the temporal
control signals for the three time-triggered tasks.

(c) Compare the solutions of 4.8.(a) and 4.8.(b) with respect to the generated
computational load and the load on the communication system. How sensitive
are the solutions if the parameters, e.g. the jitter of the communication system
or the length of the TDMA round, are changed?

4.9 Calculate the overhead of a trigger task if the WCET of the trigger task is 200
µsec and the laxity of an RT transaction is 10 msec. Discuss the advantages and
disadvantages of an application-task activation by an interrupt versus that by a
trigger task.

4.10 What are the effects of pipelining and caching on the WCET? Assume that an
interrupt must be serviced during the execution of a task. How is the WCET of
the task affected?

4.11 Assume that there is a large difference between the experimentally observed
WCET and the analytically calculated WCET. What can you learn from this
difference? How can you reduce the difference? What are the problems with the
experimental measurement of the WCET?

4.12 Assume that an instruction cache has a cycle time of 20 nsec. If an instruction
resides in the cache the access time is one cycle, while the penalty of a cache
miss is 8 extra cycles. The cache size is 256 instructions. What is the worst-
case variability of the microarchitecture delay caused by cache reloading?

Assume that a processor has an instruction "Perform the operation without
using the cache" and that the time for the two context switches and the interrupt
service by task B (Figure 4.7) is 50 µsec if the caches are bypassed. What
would be the effect of such a microarchitecture on the WCET?

Chapter 5

Real-Time Entities and Images

OVERVIEW

In this chapter, the notions of a real-time (RT) entity and a real-time (RT) image are
refined. The new concept of a real-time (RT) object is introduced. An RT object is a
container that holds the current version of the RT image of the associated RT entity.
The temporal validity of the RT image (and consequently that of the RT object) can
be extended by state estimation. This technique uses the knowledge about a past state
as well as the regularity of the RT entity to predict the state of the RT entity at a
future point of use. A real-time clock is associated with every RT object. The
object's clock provides periodic temporal control signals for the execution of the
object procedures, particularly for state estimation procedures. The granularity of the
RT object's clock is determined by the dynamics of the RT entity in the controlled
object that is associated with the RT object.

The issue of temporal accuracy, which is a relation between an RT entity and its
associated RT image, is investigated in detail. The notions of parametric and phase-
sensitive observations of RT entities are introduced, and the concept of permanence of
an observation is discussed. The duration of the action delay, which is the time
interval between the transmission of a message and the point in time when this
message becomes permanent, is estimated.

The final section of this chapter is devoted to an elaboration of the problem of replica
determinism, A set of replicated RT objects is replica determinate if the objects visit
the same state at approximately the same time. Replica determinism is needed for the
implementation of fault tolerance by active redundancy. The main causes for replica
non-determinism are the digitalization error in the process inputs, the drift of the
local clocks, non-deterministic language constructs, and the use of preemptive
dynamic scheduling.

98 CHAPTER 5 REAL-TIME ENTITIES AND IMAGES

This chapter is divided into two major parts. In the first part (Section 5.1 to Section
5.3), the set of structural units introduced in Chapter 1, including the real-time (RT)

entity, the observation, the RT image, and the RT object is refined. The second part
(Section 5.4 to Section 5.6) analyzes the relationships between these structural units:

(i) Temporal accuracy is a relation between an RT entity and its associated RT
images and RT objects.

(ii) Permanence and Idempotency are relations among a set of messages arriving at
the same RT object.

(iii) Replica determinism is a relation among a set of replicated RT objects.

5.1 REAL-TIME ENTITIES

A real-time (RT) entity is a state variable of relevance for the given purpose, and is
located either in the environment or in the computer system. Examples of RT
entities are the flow of a liquid in a pipe, the setpoint of a control loop that is
selected by the operator, and the intended position of a control valve. An RT entity
has static attributes that do not change during the lifetime of the RT entity, and has
dynamic attributes that change with time. Examples of static attributes are the name,
the type, the value domain, and the maximum rate of change. The value set at a
particular point in time is the most important dynamic attribute. Another example of
a dynamic attribute is the rate of change at a chosen point in time.

5.1.1 Sphere of Control

Every RT entity is in the sphere of control (SOC) of a subsystem that has the
authority to set the value of the RT entity [Dav79]. Outside its SOC, the RT entity
can only be observed, but not modified. At the chosen level of abstraction, syntactic
transformations of the representation of the value of an RT entity that do not change
its semantic content are disregarded.

Figure 5.1: RT entities, RT images, and RT objects.

CHAPTER 5 REAL-TIME ENTITIES AND IMAGES 99

Figure 5.1 shows another view of Figure 1.8, and represents the small control
system that controls the flow of a liquid in a pipe according to a setpoint selected by
the operator. In this example, there are three RT entities: the flow in the pipe is in
the SOC of the controlled object, the setpoint for the flow is in the SOC of the
operator, and the intended position of the control valve is in the SOC of the
distributed system.

5.1.2 Discrete and Continuous Real-Time Entities

An RT entity can have a discrete value set (discrete RT entity) or a continuous value
set (continuous RT entity). The value set of a discrete RT entity is defined and
remains constant between a left event (L_event) and a right event (R_event)–see
Figure 5.2.

Figure 5.2: Discrete RT entity.

In the interval between an R_event and the next L_event, the set of values of a
discrete RT entity is undefined. In contrast, the set of values of a continuous RT
entity is always defined.

Example: Consider a garage door. Between the defined states specified by "door
closed" and "door open", there are many intermediate states that can be classified
neither as "door open" nor as "door closed".

5.2 OBSERVATIONS

The information about the state of an RT entity at a particular point in time is
captured by the notion of an observation. An observation is an atomic data structure

Observation = <Name, tobs, Value>

consisting of the name of the RT entity, the point in real time when the observation
was made (t

obs
), and the observed value of the RT entity. A continuous RT entity

can be observed at any point in time while a discrete RT entity can only be observed
between a L_event and an R_event (see Figure 5.2).

We assume that a local microprocessor (a field bus node as introduced in Section
7.3.3) is associated with a sensor to perform the observation. An observation should
be transported in a single message from this field bus node to the rest of the system
because the message concept provides for the atomicity of the observation message.

100 CHAPTER 5 REAL-TIME ENTITIES AND IMAGES

5 .2 .1 Unt imed Observat ion

In a distributed system without global time, a timestamp can only be interpreted
within the scope of the node that created the timestamp. The timestamp of a sender
that made an observation is thus meaningless at the receiver of the observation
message. Instead, the time of arrival of an untimed observation message at the
receiver node is often taken to be the time of observation to b s . This timestamp is

imprecise because of the delay and the jitter between the actual point of observation
and the arrival time of the message at its destination. In a system with a significant
jitter of the execution time of the communication protocol (in comparison to the
median execution time) and without access to a global time-base it is not possible to
determine the time of observation of an RT entity precisely. This imprecision of
time measurement can reduce the quality of the state estimation, as will be shown in
Section 5.4.

5.2 .2 Indirect Observation

In some situations, it is not possible to observe the value of an RT entity directly.
Consider, for example, the measurement of the temperature within a slab of steel.
This internal temperature (the value of the RT entity) must be measured indirectly.

Figure 5.3: Indirect measurement of an RT entity.

The three temperature sensors T1, T2, and T3 measure the change of temperature of

the surface (Figure 5.3) over a period of time. The value of the temperature T within
the slab and the point in time of its relevance must be inferred from these surface
measurements by using a mathematical model of heat transfer.

5.2.3 State Observation

An observation is a state observation if the value of the observation contains the
state of the RT entity. The time of the state observation refers to the point in real-
time when the RT entity was sampled. Every reading of a state observation is self-
contained because it carries an absolute value. Many control algorithms require a
sequence of equidistant state observations, a service provided by periodic time-
triggered readings.

The semantics of state observations matches well with the semantics of the state
messages introduced in Chapter 2. A new reading of a state observation replaces the
previous readings because clients are normally interested in only the most recent
value of a state variable.

CHAPTER 5 REAL-TIME ENTITIES AND IMAGES 101

5.2.4 Event Observation

An event is an occurrence (a state change) that happens at a point in time. Because an
observation is also an event, it is not possible to observe an event in the controlled
object directly. It is only possible to observe the consequences of the controlled
object's event (Figure 5.4), i.e., the subsequent state. An observation is an event

observation if it contains the change in value between the "old" and the "new" states.
The time of the event observation denotes the best estimate of the point in time of
this event. Normally, this is the time of the L-event of the new state.

Figure 5.4: Observation of an event.

There are a number of problems with event observations:

(i) Where do we get the precise time of the event occurrence? If the event
observation is event-triggered, then, the time of event occurrence is assumed to
be the rising edge of the interrupt signal. Any delayed response to this interrupt
signal will cause an error in the timestamp of the event observation. If the
event observation is time-triggered, then, the time of the event occurrence can
be at any point within the sampling interval.

Since the value of an event observation contains the difference between the old
state and the new state (and no absolute state), the loss or duplication of a
single event observation causes the loss of state synchronization between the
state of the observer and the state of the receiver. From the point of view of
reliability, event observations are more fragile than state observations.

(iii) An event observation is only sent if the RT entity changes its value. The
latency for the detection of a failure of the observer node cannot be bounded
because the receiver assumes that the RT entity has not changed its value if no
new message arrives.

On the other hand, event observations are more efficient than state observations in
the case where the RT entity does not change frequently.

(ii)

5.3 REAL-TIME IMAGES AND REAL-TIME OBJECTS

5.3.1 Real-Time Images

A real-time (RT) image is a current picture of an RT entity. An RT image is valid at
a given point in time if it is an accurate representation of the corresponding RT

102 CHAPTER 5 REAL-TIME ENTITIES AND IMAGES

entity, both in the value and the time domains. The notion of temporal accuracy of
an RT image will be discussed in detail in the next Section. While an observation
records a fact that remains valid forever (a statement about an RT entity that has been
observed at a particular point in time), the validity of an RT image is time-dependent

and thus invalidated by the progression of real-time. RT images can be constructed
from up-to-date state observations or from up-to-date event observations. They can
also be estimated by a technique called "state estimation" that will be discussed in
Section 5.4.3. RT images are stored either inside the computer system or in the
environment (e.g., in an actuator).

5.3.2 Real-Time Objects

A real-time (RT) object is analogous to a container within a node of the distributed
computer system holding an RT image or an RT entity [Kop90b]. A real-time clock
with a specified granularity is associated with every RT object. Whenever this object
clock ticks, a temporal control signal is relayed to the object to activate an object
procedure [Kim94]. If there is no other way to activate an object procedure than by
this periodic clock tick, we call the RT object a synchronous RT object.

Distributed RT Objects: In a distributed system, an RT object can be replicated
in such a manner that every local site has its own version of the RT object to provide
the specified service to the local site. The quality of service of a distributed RT object
must conform to some specified consistency constraints.

Example: A good example of a distributed RT object is global time; every node has
a local clock object which provides a synchronized time service with a specified
precision Π (quality of service attribute of the internal clock synchronization).
Whenever a process reads its local clock, it is guaranteed that a process, in another
node, that reads its local clock at the same point in real-time will get a time value
that differs by at most one tick.

Membership Service: Another example of a distr ibuted RT object is a
membership service in a distributed system. A membership service generates
consistent information about the state (operational or failed) of all nodes of the
system at agreed points in time (membership points). The length and the jitter of the
interval between a membership point and the point in time when the consistent
membership information is known at the other nodes, are quality of service
parameters of the membership service. A responsive membership service has a small
maximum delay between the point in time of a relevant state change of a node
(failure or join), and the moment at which all other nodes have been informed of this
state change, in a consistent manner.

5.4 TEMPORAL ACCURACY

Temporal accuracy is the relationship between an RT entity and its associated RT
image. Because an RT image is stored in an RT object, the temporal accuracy can
also be looked upon as a relation between an RT entity and an RT object.

CHAPTER 5 REAL-TIME ENTITIES AND IMAGES 103

5.4.1 Definit ion

The temporal accuracy of an RT image is defined by referring to the recent history of
observations of the related RT entity. A recent history RHi at time ti is an ordered set
of time points {ti,ti -1,ti-2,. . . . ti-k}, where the length of the recent history, dacc =
z(ti)- z(ti-k), is called the temporal accuracy interval or the temporal accuracy. (z(e) is

the timestamp of event e generated by the reference clock z; see Section 3.1.2).
Assume that the RT entity has been observed at every time point of the recent
history. An RT image is temporally accurate at the present time ti if

∃ tj ∈ RHi: Value (RT image at ti) = Value (RTentity at tj)

The present value of a temporally accurate RT image is a member of the set of values
that the RT entity had in its recent history. Because the transmission of an
observation message from the observing node to the receiving node takes some
amount of time, the RT image lags behind the RT entity (See Figure 5.5).

Figure 5.5: Time lag between RT entity and RT image.

Temporal Accuracy Interval: The size of the admissible temporal accuracy
interval is determined by the dynamics of the RT entity in the controlled object. The
delay between the observation of the RT entity and the use of the RT image causes
an error, error(t), of the RT image that can be approximated by the product of the
gradient of the value v of the RT entity multiplied by the length of the interval
between the observation and its use (see also Figure 1.6):

If a temporally valid RT image is used, the worst-case error,

is given by the product of the maximum gradient and the temporal accuracy dacc. In a

balanced design, this worst-case error caused by the temporal delay is in the same
order of magnitude as the worst-case measurement error in the value domain, and is
typically a fraction of a percentage point of the full range of the measured variable.

If the RT entity changes its value quickly, a short accuracy interval must be
maintained. Let us call tuse the point in time when the result of a computation using

104 CHAPTER 5 REAL-TIME ENTITIES AND IMAGES

an RT image is applied to the environment. For the result to be accurate, it must be
based on a temporally accurate RT image, i.e.,:

where dacc is the accuracy interval of the RT image. If this important condition is

transformed. it follows that:

Example: On September 14, 1993, a Lufthansa Airbus A 320 overran the runway
after landing at Warsaw Airport, killing a crew member and a passenger, and injuring
54. The A320 control logic required the airplane to be settled on both main landing
gears before the brakes, ground spoilers and thrust reversers can be activated. The
airplane did not settle onto its second main landing gear for nine seconds, at which
point it was still traveling at 154 knots--20 knots above normal landing speed--with
only 1000 m of runway left [Neu95,p.46]. In this example the information "the
plane is still in the air and therefore the brakes, ground spoilers and trust reversers
cannot be activated" was temporally invalid because of an improper instrumentation
logic.

Phase-Aligned Transaction: Consider the case of an RT transaction consisting
of the following tightly synchronized tasks: the computational task at the sender
(observing node) with a worst-case execution time WCETsend, the message
transmission with a worst-case communication delay WCCOM, and the
computational task at receiver (actuator node) with a worst-case execution time
WCETrec (Figure 5.6). Such a transaction is called a phase-aligned transaction.

Figure 5.6: Synchronized actions.

In such a transaction, the worst-case difference between the point of observation and
the point of use,

is given by the sum of the worst-case execution time of the sending task, the worst-
case communication delay, and the worst-case execution time of the receiving task
that uses the data in the output of a setpoint to the actuator in the controlled object.
If the temporal accuracy dacc that is required by the dynamics of the application is

smaller than this sum, the application of a new technique, state estimation, is
inevitable in solving the temporal accuracy problem. The technique of state
estimation is discussed in Section 5.4.3.

CHAPTER 5 REAL-TIME ENTITIES AND IMAGES 105

Table 5.1: Temporal accuracy intervals in engine control.

Example: Let us analyze the required temporal accuracy intervals of the RT images
that are used in a controller of an automobile engine (Table 5.1) with a maximum
rotational speed of 6000 revolutions per minute (rpm).

There is a difference of more than six orders of magnitude in the temporal accuracy
intervals of these RT images. It is evident that the dacc of the first data element,

namely the position of the piston within the cylinder, requires the use of state
estimation.

5.4.2 Classif ication of Real-Time Images

Parametric RT Image: Assume that an RT image is updated periodically, by a
state observation message from the related RT entity, with an update period dupdate.
(Figure 5.7) and that the transaction is phase aligned at the sender. If the temporal

then, we call the RT image parametric or phase insensitive.

Figure 5.7: Parametric Real-time image

A parametric RT image can be accessed at the receiver at any time without having to
consider the phase relationship between the incoming observation message and the
point of use of the data.

accuracy interval dacc satisfies the condition

106 CHAPTER 5 REAL-TIME ENTITIES AND IMAGES

Example: The RT transaction that handles the position of the accelerator pedal
(observation and preprocessing at sender, communication to the receiver, processing
at the receiver and output to the actuator) takes an amount of time

Because the accuracy interval of this observation is 10 msec (Table 5.1), messages
sent with periods less than 6 msec will make the RT image (of the position of the
accelerator pedal) parametric.

Phase-Sensitive RT Image: The RT image is called phase sensitive if

In this case, the phase relationship between the moment at which the RT image is
updated, and the moment at which the information is used, must be considered. In the
above example, an update period of more than 6 msec, e.g., 8 msec, would make the
RT image phase sensitive.

Every phase-sensitive RT image imposes an additional constraint on the scheduling
of the real-time task that uses this RT image. The scheduling of a task that accesses
phase-sensitive RT images is thus significantly more complicated than the
scheduling of tasks using parametric RT images. It is good practice to minimize the
number of RT images that are phase-sensitive. This can be done, within the limits
imposed by dupdate, by either increasing the update frequency of the RT image, or by

deploying a state-estimation model to extend the temporal accuracy of the RT image.
While an increase in the update frequency puts more load on the communication
system, the implementation of a state-estimation model puts more load on the
processor. A designer is at liberty to find a tradeoff between utilizing communication
resources or processing resources.

5.4.3 State Estimation

State estimation involves the building of a model of an RT entity inside an RT
object to compute the probable state of an RT entity at a selected future point in
time, and to update the corresponding RT image accordingly. The state estimation
model is executed periodically within the RT object that stores the RT image. The
control signal for the execution of the model is derived from the tick of the real-time
clock that is associated with the RT object (see Section 5.3.2). The most important
future point in time where the RT image must be in close agreement with the RT
entity is tuse, the point in time where the value of the RT image is used to deliver an

output to the environment. State estimation is a powerful technique to extend the
temporal accuracy interval of an RT image, i.e., to bring the RT image into better
agreement with the RT entity.

Example: Assume that the crankshaft in an engine rotates with a rotational speed of
3000 revolutions per minute, i.e., 18 degrees per millisecond. If the time interval
between the point of observation, tobs, of the position of the crankshaft and the

CHAPTER 5 REAL-TIME ENTITIES AND IMAGES 107

point of use, tuse, of the corresponding RT image is 500 microseconds, we can

update the RT image by 9 degrees to arrive at an estimate of the position of the
crankshaft at tuse. We could improve our estimate if we also consider the angular
acceleration or deceleration of the engine during the interval [tobs, tuse].

An adequate state estimation model of an RT entity can only be built if the behavior
of the RT entity is governed by a known and regular process, i.e., a well-specified
physical or chemical process. Most technical processes, such as the above-mentioned
control of an engine, fall into this category. However, if the behavior of the RT
entity is determined by chance events, then, the technique of state estimation is not
applicable.

Input to the State Estimation Model: The most important dynamic input to
the state estimation model is the precise length of the time interval [tobs, tuse].

Because tobs and tuse are normally recorded at different nodes of a distributed system,

a communication protocol with minimal jitter or a global time-base with a good
precision is a prerequisite for state estimation. This prerequisite is an important
requirement in the design of a field bus.

If the behavior of an RT entity can be described by a continuous and differentiable
function v(t), the first derivative dv/dt is sometimes sufficient in order to obtain a
reasonable estimate of the state of the RT entity at the point tuse in the neighborhood

of the point of observation:

If the precision of such a simple approximation is not adequate, a more elaborate
series expansion around tobs can be carried out. In other cases a more detailed

mathematical model of the process in the controlled object may be required. The
execution of such a mathematical model can demand considerable processing
resources.

Figure 5.8: Latency at sender and receiver.

5.4.4 Composability Considerations

Assume a time-triggered distributed system where an RT entity is observed by the
sensor node, and the observation message is then sent to one or more nodes that
interact with the environment. The length of the relevant time interval [tobs,tuse] is
thus the sum of the delay at the sender, given by the length [tobs,tarr], and the delay

108 CHAPTER 5 REAL-TIME ENTITIES AND IMAGES

at the receiver, given by the length [tarr,tuse], (the communication delay is subsumed

in the sender delay). In a time-triggered architecture, all these intervals are static and
known a priori (Figure 5.8).

If the state estimation is performed in the RT object at the receiver, then any
modification in the delay at the sender will cause a modification of the time interval
that must be compensated by the state estimation of the receiver. The receiver
software must be changed if a latency change takes place inside the sender node. To
decrease this coupling between the sender and the receiver, the state estimation can be
performed in two steps: the sender performs a state estimation for the interval
[tobs,tarr] and the receiver performs a state estimation for the interval [tarr,tuse]. This

gives the receiver the illusion that the RT entity has been observed at the point of
arrival of the observation message at the receiver. The point of arrival is then the
implicit timestamp of the observation, and the receiver is not affected by a schedule
change at the sender. Such an approach helps to unify the treatment of sensor data
that are collected via a field bus, as well as sensor data that are collected directly by
the receiving node.

5.5 PERMANENCE AND IDEMPOTENCY

5.5.1 Permanence

Permanence is a relation between a particular message arriving at a node and the set
of all messages that have been sent to this node before this particular message. A
particular message becomes permanent at a given node at that point in time when the
node knows that all the messages that have been sent to it prior to the send time of
this message, have arrived (or will never arrive) [Ver94].

Figure 5.9: Hidden channel in the controlled object.

Example: Consider the example of Figure 5.9, where the pressure in a vessel is
monitored by a distributed system. The alarm monitoring node (node A) receives a
message MDA from the pressure sensor node (node D) whenever there is a pressure

change.

CHAPTER 5 REAL-TIME ENTITIES AND IMAGES 109

Figure 5.10: Permanence of messages.

If the pressure changes abruptly for no apparent reason, the alarm monitoring node A
should raise an alarm. Suppose that the operator node B sends a message MBC to

node C to open the control valve in order to release the pressure. At the same time,
the operator node B sends a message MBA to node A, to inform node A about the
opening of the valve, so that node A will not raise an alarm due to the anticipated
drop in pressure.

Assume that the communication system has a minimum protocol execution time
dmin, and a maximum protocol execution time dmax, i.e., a jitter djit = dmax -
dmin. Then the situation depicted in Figure 5.10 could occur. In this figure, the
message MDA from the pressure sensor node arrives at the alarm monitoring node A
before the arrival of the message MBA from the operator (that informs the alarm

monitoring node A of the anticipated drop in pressure). The transmission delay of the
hidden channel in the controlled object between the opening of the valve and the
changing of the pressure sensor is shorter than the maximum protocol execution
time. Thus, to avoid raising any false alarms, the alarm monitoring node should
delay any action until the alarm message MDA has become permanent.

Action Delay: The time interval between the start of transmission of a given
message and the point in time when this message becomes permanent at the receiver,
is called the action delay. The receiver must delay any action on the message until
after the action delay has passed to avoid an incorrect behavior.

Irrevocable Action: An irrevocable action is an action that cannot be undone. An
irrevocable action causes a lasting effect in the environment. An example of an
irrevocable action is the activation of the firing mechanism on a firearm. It is
particularly important that an irrevocable action is triggered only after the action
delay has passed.

Example The pilot of a fighter aircraft is instructed to eject from the airplane
(irrevocable action) immediately after a critical alarm is raised. Consider the case
where the alarm has been raised by a message that has not become permanent yet

:

110 CHAPTER 5 REAL-TIME ENTITIES AND IMAGES

(e.g., event 4 in Figure 5.10). In this example, the hidden channel, which was not
considered in the design, is the cause for the loss of the aircraft,

5.5.2 Duration of the Action Delay

The duration of the action delay depends on the jitter of the communication system
and the temporal awareness of the receiver [Kop89]. Let us assume the position of
the omniscient outside observer who can see all significant events.

Systems with a Global Time: In a system with global time, the send time
tsend of the message, measured by the clock of the sender, can be part of the

message, and can be interpreted by the receiver. If the receiver knows that the
maximum delay of the communication system is dmax, then, the receiver can infer
that the message will become permanent at tpermanent = tsend + dmax + 2g, where g

is the granularity of the global time-base (see Section 3.2.4 to find out where the 2g

comes from).

Systems without a Global Time: In a system without global time, the
receiver does not know when the message has been sent. To be on the safe side, the
receiver must wait dmax - dmin time units after the arrival of the message, even if the
message has already been dmax units in transit. In the worst case, as seen by the

outside observer, the receiver thus has to wait for an amount of time

tpermanent = tsend + 2dmax - dmin + gl

before the message can be safely acted on (where gl is the granularity of the local
time-base). Since (dmax - d min + gl) is normally much larger than 2g, where g is the

granularity of the global time, a system without a global time-base is slower than a
system with a global time-base.

5.5.3 Accuracy Interval versus Action Delay

An RT image may only be used if the message that transported the image is
permanent, and the image is temporally accurate. In a system without state
estimation, both conditions can only be satisfied in the time window (tpermanent,

tobs+dacc). The temporal accuracy dacc depends on the dynamics of the control
application while (tpermanent-tobs) is an implementation-specific duration. If an

implementation cannot meet the temporal requirements of the application, then, state
estimation may be the only alternative left in order to design a correct real-time
s y s tem.

5.5.4 Idempotency

Idempotency is the relationship among the members of a set of replicated messages
arriving at the same receiver. A set of replicated messages is idempotent if the effect
of receiving more than one copy of a message is the same as receiving only a single
copy. If messages are idempotent, the implementation of fault tolerance by means of

CHAPTER 5 REAL-TIME ENTITIES AND IMAGES 11 I

replicating messages is simplified. No matter whether the receiver receives one or
more of the replicated messages, the result is always the same.

Example: Let us assume that we have a distributed system without synchronized
clocks. In such a system, only untimed observations can be exchanged among nodes,
and the time of arrival of an observation message is taken as the time of observation.
Assume a node observes an RT entity, e.g., a valve, that changes its value between
0° and 180°, and reports this observation to other nodes in the system. The receivers
use this information to construct an updated version of the local RT image of the RT
entity in their RT objects. A state observation might contain the absolute value
"position of valve at 45°", and will replace the old version of the image. An event
message might contain the relative value "valve has moved by 5°". The contents of
this event message are added to the previous contents of the state variable in the RT
object to arrive at an updated version of the RT image. While the state message is
idempotent, the event message is not. A loss or duplication of the event message
results in a permanent error of the RT image.

5.6 REPLICA DETERMINISM

Replica determinism is a desirable relation among replicated RT objects. A set of
replicated RT objects is replica determinate if all the members of this set have the
same externally visible h-state, and produce the same output messages at points in
time that are at most an interval of d time units apart (as seen by the omniscient
outside observer with the reference clock z). A set of nodes is replica determinate, if
all the nodes in this set contain the same externally visible h-state at their ground
state, and produce the same output messages at points in time that are at most an
interval of d time units apart.

In a fault-tolerant system, the time interval d determines the time it takes to replace a
missing message or an erroneous message from a node by a correct message from
redundant replicas. This time interval must be derived from the dynamics of the
application. If, in a time-triggered system, the objects (nodes) contain the same h-
state and produce the same output messages at the same global ticks of their local
clocks, then an upper bound for the time interval d is given by the precision of the
global time.

Why Do We Need Replica Determinism? Replica determinism is needed to:

(i) Implement fault-tolerance by active redundancy [Sch90]: If the replicated nodes
proceed along significantly different computational trajectories, then, the
switchover from the result of one replica to that of the other will upset the
controlled object, and may even lead to a serious error. The voter in a fault-
tolerant system based on majority voting may reach an erroneous result if the
inputs to the voter are not replica determinate (see Figure 5.11).

Facilitate the system test: A replica determinate system always produces
identical results, in the value domain and the time domain, from the same input

(ii)

112 CHAPTER 5 REAL-TIME ENTITIES AND IMAGES

data presented at exactly the same relative points in time. A non-determinate

system may produce different results from identical input data, thus
complicating the regression test and the debugging of the system.

5.6.1 Major Decision Point

A major decision point is a decision point in an algorithm that provides a choice
between a set of significantly different courses of action. If the replicated nodes select
different computational trajectories at a major decision point, then, the h-states of the
replicas will start to diverge. It then becomes impossible to replace the result of one
replicated node by that of another in the case a replicated node crashes in a fault-
tolerant system.

Example: Consider an airplane with a three-channel flight-control system and a
majority voter. Each channel has its own sensors and computers to minimize the
possibility of a common-mode error. Within a specified time interval after the event
"start of take-off", the control system must check whether the plane has attained the
take-off speed. In case the take-off speed has been attained, the lift-off procedure is
initiated, and the engines are further accelerated. In case the take-off speed has not
been reached within this specified time interval, the take-off must be aborted, and the
engines must be stopped (Figure 5.11). The decision whether or not to take off
occurs at a major decision point.

Figure 5.11: The need for replica determinism.

Assume that the speed of the plane at the major decision point is about the same as
the specified limit of the take-off speed. Because of random effects (deviation in the
sensor calibration, digitalization error, slightly different points in the time of speed
measurement), channels 1 and 2 reach different conclusions: channel 1 decides that the
take-off speed has been reached and that the plane should take off. Channel 2 decides
that the take-off speed has not been reached and the take-off should be aborted. Both
channels take the correct decisions, although the decisions are not replica determinate.

Channel 3 is faulty and decides to abort, and to accelerate the engine. In the majority
vote, the faulty channel wins, because the correct channels are not replica
determinate.

CHAPTER 5 REAL-TIME ENTITIES AND IMAGES 11 3

Not all the decisions within the software are major decisions. A loop iteration that is
terminated after a different number of iterations at the two replicas does normally not
lead to significantly different computational trajectories. The occurrence of a major
decision point is determined by the semantics of an application, and not by syntactic
properties of an algorithm. For example, the application-specific decision as to
whether a process should continue or be shut down because of some irregularity, is
always a major decision point.

5.6.2 Basic Causes of Replica Non-determinism

The basic causes of replica non-determinism are: differing inputs, a difference between
the progress of the computation and that of the local clocks in the replicas, differing
oscillator drifts caused by the physical variations of the resonators, and algorithmic
peculiarities[Pol95a].

Differing Inputs: Whenever a value that is defined over a continuous value
domain is mapped onto a discrete value domain, a digitalization error occurs. The
physical RT entities in the controlled object, e.g., temperature and pressure, are
defined over continuous value domains. The analog-to-digital transformation at the
computer interfaces maps these values into discrete domains, causing a potential
digitalization error of one bit. The same phenomenon occurs in the temporal domain:
external time is dense, while internal time within a computer is discrete. If events
that occur on a dense time-base are observed in a different order by two replicas, then,
significantly different computational trajectories could develop.

Example: Consider a man-machine interface where two operators work on two
replicated operator consoles. Assume that the delivery order of two significant events
is different at these two consoles. The two operators could come to different
conclusions about the cause-effect relationship between these two events and start to
act inconsistently.

Deviations of Computational Progress Relative to Physical Time: In
many computers, the CPU is driven by the same resonator as the real-time clock.
One would therefore assume that the progress of the local physical time is in
synchrony with the progress of the computation. This assumption is not generally
valid, since, to correct a randomly occurring transient error, many processors provide
hardware-controlled instruction-retry mechanisms that take physical time without
resulting in computational progress. If, in two replicas, a different number of
instruction retries are executed, the computational progress can diverge from the
progress of the local physical time. If different resonators are used for the real-time
clock and the CPU, then, a different relationship between local physical time and
computational progress in replicated nodes is unavoidable.

The differences in the progress between the physical time and the computational time
lead to consequences whenever a program reads the local clock. The two replicas read
different clock values at the same point of the computation, and could thus make
different decisions.

114 CHAPTER 5 REAL-TIME ENTITIES AND IMAGES

Oscillator Drift: The control signals for the CPU originate from a physical
oscillator, a quartz crystal. Because the mechanical dimensions of any two physical
quartz crystals are slightly different, no two physical oscillators have the same drift.
These slight differences in the drift of the oscillators of replicated nodes can lead to an
non-determinate outcome for those decisions that involve, in one way or another, the
local time. A prime example is the local use of time-outs. The same time-out value
that is defined abstractly by a time-out value in a replicated program will lead to
time-out intervals of slightly differing physical lengths at the replicas. If a significant
event, e.g., the expected arrival of an acknowledgment message that is monitored by
a local time-out, occurs after the local time-out event in one replica, but before the
same time-out event in another replica, then, remarkably different computational
trajectories may develop in the two replicas (see also Fig. 5.12).

Preemptive Scheduling: If dynamic preemptive scheduling is used (see Section
11.3), then, the points in the computations where an external event (interrupt) is
recognized may differ at the different replicas. Consequently, the interrupting
processes see different states at the two replicas at the point of interruption. They
may reach different results at the next major decision point.

Nondeterministic Language Features: The use of a programming language
with nondeterministic language constructs, such as the SELECT statement in an
ADA program, can lead to the loss of replica determinism. Since the programming
language does not define which alternative is to be taken at a decision point, it is left
up to the implementation to decide the course of action to be taken. Two replicas
may take different decisions.

Race Conditions: The wait statement in a C-task (see Section 4.2.1) can also
give rise to non-determinism, because of the uncertain outcome regarding the process
which will win the race for a semaphore. Communication protocols that resolve a
media-access conflict by reference to a random number generator, such as the Ethernet
protocol, also suffer from replica non-determinism. The same argument applies to
communication protocols that resolve the access conflict by relying on the outcome
of non-determinate temporal decisions, such as ARINC 629 or CAN (see Section
7.5).

Consistent Comparison Problem: If different software versions are deployed
in the replicas with the goal of tolerating design faults in the software, then, the
consistent comparison problem [Bri89] must be addressed. If an application uses
inexact algorithms, such as those for floating-point arithmetic, then, a different order
of the operations can lead to a difference in the results. If, however, all floating-point
operations are performed in the same order in the replicated software versions, then,
the diversity of the versions is significantly reduced.

5.6.3 Building a Replica Determinate System

The construction of replica determinate nodes requires careful design of the software
system so that all the causes of replica non-determinism that have been discussed in
the previous Section are properly addressed.

CHAPTER 5 REAL-TIME ENTITIES AND IMAGES 115

Sparse Time-base: A sparse global time-base makes it possible to assign a
significant event to the same global clock tick at all the replicas without the
execution of an agreement protocol (see Section 3.3). Any reference to the local real-
time clock of a node (without the execution of an agreement protocol) can lead to
replica non-determinism. This means that no local time-outs may be used in any part
of the software, including the application software, the operating system and the
communication software.

Example: Consider a situation where a message is transmitted from a sending FTU
(consisting of two nodes, node A and B) to a receiving FTU, where the receiving
FTU responds with an acknowledgment message. This acknowledgment message is
monitored at both nodes, node A and B, of the sending FTU by a local time-out at
each node, as shown in Figure 5.12.

Figure 5.12: The effect of local time-outs at an FTU.

Because the frequency of any two oscillators is slightly different, node A may
encounter its time-out before the arrival of the acknowledgment message, while node
B may see the acknowledgment message before its time-out. This will result in
differing computational trajectories at the two replicas.

Agreement on Input: Whenever a redundant observation of an RT entity outside
the sphere of control (SOC) of a fault-tolerant computer system is performed, an
agreement protocol must be executed among all replicas of the observing FTU to
reach a common view of the exact digital value of an observation, and the exact point
in time on the sparse time-base when the observation was taken. The agreement on
the time is the basis for establishing a consistent system-wide order of all
observation events (see also Section 9.2).

Static Control Structure: The implementation of a data-independent static
control structure that can be validated independently of the data inputs is a safe choice
for the implementation of replica determinate software. All inputs from the control
object are periodically sampled by a trigger task, and no interrupt from the controlled
object is allowed to occur. If the application timing requirements are so stringent
(less than 1 msec response time) that a process interrupt causing a dynamic task
preemption cannot be avoided, then all the possibilities of task preemption must be
statically analyzed in the application context to ensure that replica determinism is
maintained. Nonpreemptive dynamic scheduling avoids the problems of unpredictable
task interference.

Deterministic Algorithms: In the algorithmic section of an implementation,
all constructs that could lead to non-determinate results must be avoided. Special
attention must be paid to any dynamic synchronization construct that relies on the
unpredictable resolution of a race condition, such as a semaphore "wait" operation. If

116 CHAPTER 5 REAL-TIME ENTITIES AND IMAGES

software diversity is implemented, exact arithmetic must be performed to avoid the
consistent comparison problem.

5.6.4 Leader-Follower Protocol

The above mentioned guidelines for the implementation of replica determinate
systems are so stringent that some researchers have looked for other methods to
maintain replica determinism. One such method that was investigated in the DELTA
4 project [Pow91] is the leader-follower protocol. In this protocol one replica, the
leader, takes all the major decisions, and forces the followers, who must be slightly
behind the leader, to take the same decisions. The leader-follower protocol requires a
fair amount of inter-replica coordination that entails additional bandwidth
requirements. Furthermore, it has a window of vulnerability between the point in
time when a leader takes a major decision, and the point in time when the followers
learns about this decision.

If at all possible, inter-replica coordination should be avoided for the following

reasons:

(i) It compromises the independence of the replicas, and thus weakens the
boundaries of the error-containment regions.

(ii) It requires additional time, and has thus a negative impact on the temporal
accuracy of the observation.

(iii) It requires additional communication bandwidth between the nodes.

POINTS TO REMEMBER

• An observation of an RT entity is an atomic triple <Name, tobs, Value>

consisting of the name of the RT entity, the point in real time when the
observation was made (tobs), and the observed value of the RT entity. A

continuous RT entity can be observed at any point in time, whereas a discrete
RT entity can only be observed between the L_event and the R_event

An observation is a state observation if the value of the observation contains the

absolute state of the RT entity. The time of the state observation refers to the
point in real time when the RT entity was sampled.

An observation is an event observation if it contains information abaout the
change of value between the "old state" and the "new state". The time of the
event observation denotes the best estimate of the point in time of this event.

A real-time (RT) image is a current picture of an RT entity. An RT image is
valid at a given point in time if it is an accurate representation of the
corresponding RT entity, both in the value domain and time domain.

A real-time (RT) object is analogous to a container within a node of the
distributed computer system holding an RT image or an RT entity. A real-time
clock with a specified granularity is associated with every RT object.

•

•

•

•

CHAPTER 5 REAL-TIME ENTITIES AND IMAGES 117

The present value of a temporally accurate RT image is a member of the set of
values that the RT entity had in its recent history.

The delay between the observation of the RT entity and the use of the RT image
can cause, in the worst-case, a maximum error error(t) of the RT image that can
be approximated by the product of the maximum gradient of the value v of the
RT entity multiplied by the length of the accuracy interval.

Every phase-sensitive RT image imposes an additional constraint on the
scheduling of the real-time task that uses this RT image.

State estimation involves the building of a model of an RT entity inside an RT
object to compute the probable state of an RT entity at a selected future point in
time, and to update the corresponding RT image accordingly.

If the behavior of an RT entity can be described by a continuous and
differentiable variable v(t), the first derivative dv/dt is sometimes sufficient to get
a reasonable estimate of the state of the RT entity at the point tuse in the

neighborhood of the point of observation.

To decrease the coupling between sender and receiver the state estimation can be
performed in two steps: the sender performs a state estimation for the interval
[tobs,tarr],and the receiver performs a state estimation for the interval [tarr,tuse].

A particular message becomes permanent at a given node at that point in time
when the node knows that all the messages that were sent to it, prior to the send
time of this message, have arrived (or will never arrive).

The time interval between the start of transmission of a message and the point in
time when this message becomes permanent at the receiver, is called the action

delay. To avoid incorrect behavior, the receiver must delay any action on the
message until after the action delay has passed.

An RT image may only be used if the message that transported the image has
become permanent, and the image is temporally accurate. In a system without
state estimation, both conditions can be satisfied only in the time window

No matter whether the receiver receives one or more out of set of replicated
idempotent messages, the result will always be the same.

A set of nodes is replica determinate, if all nodes of this set contain the same
externally visible h-state at their ground state and produce the same output
messages at points in time that are at most an interval of d time units apart.

The basic causes of replica non-determinism are: differing inputs, a difference
between the computational progress and the progress of the physical time in the
replicas, differing oscillator drifts caused by the physical variations of the
resonators, and algorithmic peculiarities.

If at all possible, inter-replica coordination should be avoided because it
compromises the independence of the replicas, and requires additional time and
additional communication bandwidth.

[tpermanent, tobs+dacc].

•

•

•

•

•

•

•

•

•

•

•

•

•

118 CHAPTER 5 REAL-TIME ENTITIES AND IMAGES

BIBLIOGRAPHIC NOTES

The concept of temporal accuracy of a real-time object has been introduced in the real-
time object model presented in [Kop89]. Kim has extended this model and analyzed
the temporal properties of real-time applications using this model [Kim94]. The
problem of replica determinism has been extensively studied in the context of the
MARS project [Kop89] and the DELTA 4 project [Pow91]. An excellent treatment
of this problem is contained in [Pol95a].

REVIEW QUESTIONS AND PROBLEMS

5.1 Give examples of RT entities that are needed to control an automotive engine.
Specify the static and dynamic attributes of these RT entities, and discuss the
temporal accuracy of the RT images associated with these RT entities.

What is the difference between a state observation and an event observation?

Discuss their advantages and disadvantages.

What are the problems with event observations?

Give an informal and a precise definition of the concept of temporal accuracy.

What is the recent history?

What is the difference between a parametric RT image and a phase-sensitive

RT image? How can we create parametric RT images?

What are the inputs to a state estimation model? Discuss state estimation in a
system with and without a global time-base.

Discuss the interrelationship between state estimation and composability.

What is a hidden channel? Define the notion of permanence.

Calculate the action delay in a distributed system with the following
parameters: dmax = 20 msec, dmin = 1 msec,

(a) no global time available, and the granularity of the local time is 10 µ sec,

(b) granularity of the global time 20 µsec.

What is the relationship between action delay and temporal accuracy?

Define the notion of replica determinism. Give an example of a major decision
point that can be found in almost any application.

Give an example that shows that a local time-out can lead to replica non-
determinism. Why can dynamic preemptive scheduling cause replica non-
determinism?

5.13 What mechanisms may lead to replica non-determinism?

5.14 How can we build a replica-determinate system?

5.15 Why should explicit inter-replica coordination be avoided?

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

Chapter 6

Fault Tolerance

OVERVIEW

Fault tolerance is important in safety-critical real-time systems because otherwise a
single component failure may lead to a catastrophic system failure. This chapter
starts with an explanation of the concepts of failure, error, and fault. It then proceeds
to investigate the topic of error detection. Error detection requires knowledge about
the intended behavior of a system. This knowledge can stem either from a priori

established regularity constraints and known properties of the correct behavior of a
computation, or from the comparison of the results that have been computed by two
redundant channels. Different error detection techniques for the detection of timing
errors and value errors are discussed.

In a distributed system, a node is an appropriate unit of failure. A node implements a
self-contained function so that the established architectural principle "form follows
function" can be maintained even in a failure scenario. The node implementation
must map all internal node failures into simple external failure modes. The problem
of node failure detection and membership in event-triggered and time-triggered
architectures is elaborated. A set of replica-determinate nodes is grouped together to
form a fault-tolerant unit (FTU) that masks a failure of one of its nodes. Two
different types of fault-tolerant units are introduced, and the problem of the
reintegration of a node into an operating cluster is taken up. The key issue is to find
a reintegration point where the h-state of the node is minimal. Different techniques
for h-state minimization are discussed.

The final section is devoted to a discussion about the utility of design diversity in the
implementation of safety-critical systems. An industrial example of a fail-safe system
that uses design diversity to increase the safety of the application is described.

120 CHAPTER 6 FAULT TOLERANCE

6.1 FAILURES, ERRORS, AND FAULTS

In this section, a short overview of the basic concepts that have been established in
the field of fault-tolerant computing are given. The Working Group 10.4 on Fault-
Tolerant Computing of the International Federation of Information Processing (IFIP)
has published a five-language book [Lap92] where these concepts are explained in
more detail. The core of this document details the three terms: fault, error and failure
(Figure 6.1).

Figure 6.1: Faults, errors, and failures.

Computer systems are installed to provide dependable service to system users. A user
can be a human user or another (higher level) system. Whenever the service of a
system, as seen by the user of the system, deviates from the agreed specification of
the system, the system is said to have failed.

6.1.1 Failures

A failure is an event that denotes a deviation between the actual service and the
specified or intended service, occurring at a particular point in real time.

The following classifications of failures can be made:

Failure

Figure 6.2: Classification of failures [Lap92].

Failure Nature: According to the nature of the failure, we distinguish between
value failures and timing failures. A value failure means that an incorrect value is
presented at the system-user interface. A timing failure means that a value is
presented outside the specified interval of real-time. Timing failures only exist if the
system specification contains information about the expected temporal behavior of
the system.

CHAPTER 6 FAULT TOLERANCE 121

Failure Perception: In a system with more than one user, we can distinguish
between consistent failures and inconsistent failures. In a consistent failure scenario,
all users see the same (possibly wrong) result. If a subsystem either produces correct
results or no results at all, i.e., it is quiet in case it cannot deliver the correct service,
we call this special consistent failure a fail-silent failure. If a system stops operating
after the first fail-silent failure, the failure is called a crash failure. A crash failure is
the simplest failure mode a system can exhibit. A crash failure that is made known to
the rest of the system is a fail-stop failure [Sch83]. In an inconsistent failure

situation, different users may perceive different false results. A malicious subsystem
can disturb correctly operating subsystems by showing contradictory faces of a failure
to each of the correctly operating subsystems. This is why inconsistent failures are
sometimes called two-faced failures, malicious failures, or Byzantine failures (see
Figure 3.10). Theoretical results [Pea80] have been published concerning the
minimum number of components needed to tolerate a specific type of failure. To
tolerate k failures of a certain type, we need:

(i) k+1 components if the failures are fail-silent,

(ii) 2k +1 components if the failures are fail-consistent, and

(iii) 3k +1 components if the failures are malicious.

It is therefore wise to provide enough error-detection logic inside a component to
guarantee fail-silent behavior at the system level. This approach is followed in many
commercial fault-tolerant systems, e.g., in Stratus [Web91].

Failure Effect: Depending on the effect a failure has on its environment, we
distinguish between benign and malign failures. A benign failure can only cause
failure costs that are of the same order of magnitude as the loss of the normal utility
of the system, whereas a malign failure can cause failure costs that are orders of
magnitude higher than the normal utility of a system, e.g., a malign failure can cause
a catastrophe such as the crash of an airplane. We call applications where malign
failures can occur, safety-critical applications. The characteristics of the application
the computer system is controlling determine whether a failure is benign or malign.

Failure Oftenness: Within a given time interval, a failure can occur only once or
a repeated number of times. If it occurs only once, it is called a single failure. A
special case of a single failure is a permanent one, i.e., a failure after which the
system ceases to provide a service until an explicit repair action has eliminated the
cause of the failure. If a system continues to operate after the failure, we call the
failure a transient failure. A frequently occurring transient failure is sometimes called
an intermittent failure.

Permanent Failures: The failure rate (permanent failures) of a typical VLSI
device changes over time as depicted in Figure 6.3. After an initial period of a few
hundred hours of early failures, the failure rate of a high quality chip stabilizes in a
range between 10 – 100 FITS (1 FIT means 1 failure per 109 hours, i.e., an MTTF
of about 115 000 years). The failure rate of a chip is not very sensitive to the number
of transistors on the chip; rather it depends on physical parameters, such as the
number of pins and the packaging. The period of high early failure rate can be reduced

122 CHAPTER 6 FAULT TOLERANCE

by burn-in, i.e., the operation of the chip at elevated temperatures. Cabling
constitutes a significant source of failure in distributed systems. Even a high quality
connection is expected to fail with a failure rate of 0.1 – 1 FIT/per wiring.

Figure 6.3: Typical failure rate over time.

Transient Failures: At the chip level, transient failures are much more likely to
occur than permanent failures. The transient chip failure rate can be 10 - 100 000

times higher than the permanent chip failure rate, depending on the physical
environment of the installation. The most common causes of transient failures are
electromagnetic interference (EMI), disturbances in the power supply, and high-
energy particles (e.g., α-particles).

Figure 6.4: Transient failures in the F16 fire-control radar.

Example: The system-level transient failure rate in the fire-control radar of 150
F-16 fighter planes was observed during a six months period from June - December
1984 [Geb88]. The results of this observation are depicted in Figure 6.4. According
to the data, pilots noticed malfunctions about every 6 flight hours, and requested
maintenance about every 31 hours. However, only every third malfunction that led to
a maintenance request could be reproduced in the maintenance shop. Altogether, less
than 10% of the transient failures that were observed during operation (uppermost bar
in Figure 6.4) could be reproduced in the shop's controlled test environment. Such a
failure pattern can be observed in many of today's real-time systems.

6.1.2 Errors

Most computer system failures can be traced to an incorrect internal state of the
computer, e.g., a wrong data element in the memory or a register. We call such an
incorrect internal state an error. An error is thus an unintended state. If the error exists
only for a short interval of time, and disappears without an explicit repair action, it is

CHAPTER 6 FAULT TOLERANCE 123

called a transient error. If the error persists permanently until an explicit repair action
removes it, we call it a permanent error. In a fault-tolerant architecture, every error
must be confined to a particular error containment region to avoid the propagation of
the error throughout the system. The boundaries of the error containment regions
must be protected by error detection interfaces.

Transient Errors: Transient errors form the predominant error class in many
computer systems. There are a number of applications, particularly in the field of
small real-time systems, where the system behavior can be characterized by periodic
duty cycles (e.g., control loops). A cycle starts with the sampling of the input data,
continues with the computation using a given control algorithm, and terminates after
the output of the results to an actuator in the environment. If, at the beginning of
each cycle, all internal data structures are initialized, i.e., the h-state is empty, then,
the result of the previous cycle cannot affect the current cycle. In such a system, a
transient data error that occurs in one of the duty cycles cannot have a direct impact
on any of the subsequent duty cycles. In many control applications, a failure of a
single control cycle has no serious effect on the environment (there is only a finite
amount of energy to move the actuator in a single cycle). Such systems are, by
design, tolerant to transient errors.

Figure 6.5: A transient hardware fault leading to a permanent h-state error.

Permanent Errors: In a large database, there is a large number of h-state data
elements that are stored in the database. An error in any one of these data elements is
very likely to be permanent–i.e., the error remains in the system until an explicit
repair action is invoked to repair the state. If a database transaction is disturbed by a
transient fault, and the resulting error is not immediately detected, then, a wrong
value will be written into the database (Figure 6.5), and remains as a permanent error
in the database. This mechanism shows how a transient fault can lead to a permanent
error. Since the data elements of the database act as inputs to future database
transactions, an erroneous data element causes the subsequent transaction to produce
an incorrect output as well, and to store another erroneous data element into the
database [Kop82]. We call such a steady increase in the number of errors in the
database database erosion. Utmost care must be taken to detect any transaction failure
before the results of this transaction are permanently stored in the database.

124 CHAPTER 6 FAULT TOLERANCE

In a system without an h-state, such an "h-state erosion" is not possible. Every new
computation starts with an empty (and therefore correct) h-state. This is why
"stateless" systems are much more robust regarding transient faults than systems
with h-state.

6.1.3 Faults

The cause of an error, and thus the indirect cause of a failure, is called a fault. Faults
can be classified as follows:

Figure 6.6: Classification of faults.

Fault Nature: A fault that has its origin in a chance event, e.g., the random break
of a wire, is called a chance fault. If the fault can be traced to an intentional action by
someone, e.g., the introduction of a Trojan horse by a programmer in order to break
the security of a system, then, the fault is called an intentional fault.

Fault Perception: A fault can be caused either by some physical phenomenon,
e.g., the breakdown of a computer chip, or by an error in the design, such as a
programmer's mistake or an error in the system specification. In the field of fault-
tolerant computing, a number of techniques have been developed that are effective in
handling random physical faults, such as the provision of active hardware redundancy
by replication of the hardware components [Lee90].

No comparable progress has been achieved to handle design faults: subtle design
faults in large systems are difficult to avoid, and it is nearly hopeless to diagnose
them by testing, within a reasonable period of time [Lit95]. The most promising
approach tries to limit the complexity of a design by providing a clear structure and
understandable behavior, e.g., by partitioning a large system into a set of composable
autonomous subsystems that are interconnected by small, stable, and testable
interfaces.

Fault Boundaries: It is very useful to distinguish whether a fault is caused by a
deficiency within the system or by some external disturbance, e.g., a lightning stroke
causing spikes in the power supply line. Care must be taken to avoid that a single
external fault causes correlated errors in disjoint error-containment regions.

Fault Origin: Faults that have their origin in the incorrect development of the
system must be distinguished from faults that are related to system operation, e.g., a
wrong input by the operator.

CHAPTER 6 FAULT TOLERANCE 125

Fault Persistence: Finally, it is important to distinguish between faults that
occur only once and disappear by themselves (e.g., the mentioned lightning stroke),
and faults that remain in a system until they are removed by an explicit repair action.
In a system with h-state, even a transient fault can cause a permanent error (Figure
6.5).

A more detailed description of the different types of failures and faults can be found in
the above mentioned book by Laprie [Lap92].

Table 6.1: Systematic versus application-specific fault tolerance [Pol96b].

6.1.4 Systematic versus Application-Specific Fault Tolerance

No complex system will survive for an extended period of time without fault
tolerance [Avi78, Avi96]. The designer of a safety-critical system has two options to
implement the necessary fault tolerance:

(i) At the architecture level, transparent to the application code. We call this type
of fault tolerance systematic fault tolerance. The architecture must provide
replica determinism so that fault tolerance can be achieved by the temporal or
spatial replication of computations to detect and mask the faults specified in the
fault hypothesis.

126 CHAPTER 6 FAULT TOLERANCE

(ii) At the application level, within the application code. We call this type of fault
tolerance application-specific fault tolerance. Application-specific fault tolerance
intertwines the normal processing functions with the error-detection and fault-
tolerance functions at the application level.

In systematic fault tolerance, the fault-tolerance mechanisms can be implemented and
tested independently of the application code. Systematic fault tolerance avoids an
increase in the application software complexity at the expense of additional hardware
costs (Table 6.1). Technological developments, such as the significant decrease of
hardware costs, favor the implementation of systematic fault tolerance.

In practice, there is always some compromise between systematic and application-
specific mechanisms. For example, even if systematic fault tolerance is implemented,
the error-detection coverage can be increased by using application-specific
reasonableness checks.

6.2 ERROR DETECTION

An error is a discrepancy between the intended correct state and the current state of a
system. It is the goal of the fault-tolerant computing effort to detect and mask or
repair errors before they show up as failures at the system-user service interface. Error
detection requires that, along with the information about the current state, knowledge
about the intended state of a system is available. This knowledge about the intended
correct state can arise from two different sources: either from a priori knowledge
about the intended properties of states and behaviors of the computation, or from the
comparison of the results of two redundant computational channels. In either case,
error detection is based on redundancy.

6.2.1 Error Detection Based on A priori Knowledge

The more is known a priori about the properties of correct states and the temporal
patterns of correct behavior of a computation, the more effective are the error
detection techniques that are based on a priori knowledge. If a subsystem is to be
flexible in the temporal domain and in the value domain, i.e., there are no known
regularity assumptions that restrict the system behavior beforehand, then, error
detection based on a priori knowledge is hardly possible. There is a fundamental
conflict between the requirement for flexibility and the requirement to provide a good
error-detection coverage, i.e., to detect errors with a high probability.

Syntactic Knowledge about the Code Space: Consider the scenario where
each symbol of an alphabet of 128 symbols is encoded using a single byte. Because
only seven bits (27=128) are needed to encode a symbol, the eighth bit can be used as
a parity bit to be able to distinguish a valid codeword from an invalid codeword of the
256 codewords in the code space. This a priori knowledge about the syntactic
structure of valid codewords can be used for error detection. The code space is
subdivided into two partitions, one partition encompassing syntactically correct
values, with the other containing detectably erroneous codewords. One plus the

CHAPTER 6 FAULT TOLERANCE 127

maximum number of bit errors that can be detected in a codeword is called the
Hamming Distance of the code. Examples of the use of error-detecting codes are:
parity bits and error-detecting codes in memory, CRC polynomials in data
transmission, and check digits at the man-machine interface. Such codes are very
effective in detecting the corruption of a value stored in memory or the transmission
of a value over a computer network.

Assertions and Acceptance Tests: Application-specific knowledge about the
restricted ranges and the known interrelationships of the values of RT entities can be
used to detect additional errors that are undetectable by syntactic methods. Sometimes
these application-specific error-detection mechanisms are called plausibility checks.

For example, the constraints that are imposed on the speed of change of the RT
entities by the inertia of a technical process form a basis for very effective
plausibility checks. Plausibility checks can be expressed in the form of assertions
within a program, or can be used to check for the plausibility of a result at the end of
a program by applying an acceptance test [Ran75]. Assertions and acceptance tests are
effective to detect errors that occur in the value domain during the processing of
information.

Activation Patterns of Computations: Knowledge about the regularity in the
activation pattern of a computation can be used to detect errors in the temporal
domain. If it is known that a result message must arrive every second, then, the non-
arrival of such a message can be detected within one second. If it is known that the
result message must arrive exactly at every full second, then, the error-detection
latency is given by the precision of the clock synchronization. Systems that tolerate
jitter do have a longer error-detection latency than systems without jitter. This extra
time gained from an earlier error detection can be significant in a safety-critical real-
time svstem [Lin96].

Table 6.2: Error-detection by redundant computations.

128 CHAPTER 6 FAULT TOLERANCE

Worst-case Execution Time of Tasks: In a real-time system, the worst-case
execution time (WCET) of the hard real-time tasks must be known a priori for the
calculation of the schedules. This WCET information can also be used by the
operating system at run time to detect task errors in the temporal domain. Similarly,
a priori information about the minimum execution time of a task can be used for
error detection as.

6.2.2 Error Detection Based on Redundant Computations

There are many different possible combinations of hardware, software, and time
redundancy that can be used to detect different types of errors by performing the
computations twice [Lap95]. Of course, both computations must be replica
determinate; otherwise, many more discrepancies are detected between the redundant
channels those actually caused by faults. The problems in implementing replica
determinate fault-tolerant software have already been discussed in Section 5.6.

Table 6.2 presents a number of combinations of redundant computations, and
explains the types of errors that can be detected.

6.2.3 Duplicate Execution of Tasks

Fault-injection experiments [Kar95] have shown that the duplicate execution of
application tasks at different times is an effective technique for the detection of
transient hardware errors (see also Section 12.4). This technique can be applied to
increase the error-detection coverage, even if it cannot be guaranteed that all task
instances can be completed twice in the available time interval.

Figure 6.7: Execution time distribution of tasks.

Figure 6.7 depicts a typical cumulative distribution Prcom(dex) of the percenteages of
task instances that can be completed in a time slot of given length dex. Prcom(dex)

can be experimentally measured on the target architecture. No task instance can
complete if the allocated execution time slot is less than the minimum execution
time, while all task instances can complete if this time slot exceeds the WCET

CHAPTER 6 FAULT TOLERANCE 129

(worst-case execution time of a task–see Section 4.5). To guarantee the termination
of the task, the execution time slot must have at least the length of WCET.

Due to the shape of the distribution in Figure 6.7, the probability that two instances
of the task can complete within the WCET is fairly high. Assume that the error-
detection coverage of duplicate executions for the detection of a transient fault is
Edouble. Given the shape of the distribution of Figure 6.7, the probability that two
instances of the task can complete in a given slot time, dslot, can be calculated by
statistical techniques. Let us call this probability Prdouble(dex). The probability that a
transient error is detected by double execution with a given execution slot dex is then

given by:

Edouble Prdouble(dex)

It is thus possible to select an execution time slot with a length between WCET and
2.WCET, such that the intended error-detection coverage is realized. If the time slot is
2.WCET, then the error-detection coverage corresponds to the term Edouble which,

according to the experiments described in Section 12.4, is better than 99.9 %

6.3

In a distributed real-time system, a node is considered to be an appropriate unit of
failure. A node is a self-contained unit that provides a function across a small well-
defined external interface. A failure of a node thus corresponds to the failure of the
function of the node in such a way that the architectural principle "form follows
function" can be maintained.

The implementation of fault tolerance in a distributed real-time system must proceed
on two levels. At the architectural level, the behavior of a complete node is
considered. At this level, a node should display simple failure modes. In the optimal
case, a node exhibits only fail-silent failures, i.e., a node is either operational or not.
In this case, the fault-tolerance mechanisms at the architecture level must perform
two major tasks:

(i) Membership service: to detect a node failure, and to report this node failure
consistently to all operating nodes of the cluster within a short latency.

(ii) Redundancy management: to mask the node failure by active redundancy, and to
reintegrate repaired nodes into the cluster as soon as they become available
again.

At the node level, the node implementation must ensure that the failure assumption
that has been made at the architectural level holds with a high probability.

6.3.1 Minimum Service Level of a Node

Large systems have many operational states between fully operational and non-
operational. Consider, for example, a man-machine interface equipped with two
displays. In a normal situation, both displays operate to give the operator a good
overview of what is happening in the process. If one display fails, the operator can

A NODE AS A UNIT OF FAILURE

130 CHAPTER 6 FAULT TOLERANCE

still control the process with the other display, though in a degraded mode. If both
displays fail, the industrial plant must be shut down because it cannot be observed
anymore. The state where only one display is working is considered to be the
minimum level of service. Every level of service at and above this minimum level is
considered operational. Every level of service below this minimum level is considered
a failure.

The system specification must contain precise statements about the minimum level
of service of all major system functions. As long as a node provides this minimum
level of service it is classified as operational. If it can no longer provide this
minimum level of service, it is considered non-operational. The membership service
classifies nodes according to this binary scheme: operational versus non-operational.
A further differentiation of the service capability of a node at the architectural level
adds to the complexity of the architecture level without corresponding rewards.

6.3.2 Error Detection within a Node

A node must detect all internal failures within a short latency, and must map these
failures to a single external failure mode, a fail-silent node failure. The error detection
in the node must be concerned with value failures and timing failures. The techniques
for error detection were detailed in the previous section.

Error detection in the temporal domain is of major importance in a distributed real-
time system that uses a shared communication channel. A faulty node that
monopolizes the common channel by sending high-priority messages at erroneous
points in time disrupts the communication between all properly operating nodes, and
can thus cause a complete system failure. A node that sends messages at the wrong
moment is called a babbling idiot. A babbling idiot timing failure is the most
serious failure of a node in a system with a shared communication channel, such as
in a bus system.

Error detection in the temporal domain at the external node interface, e.g., below the
CNI of a node, can only be performed if a priori knowledge is available about the
intended instants of time when a node is allowed to send a message. In a TT
architecture, this information is static and is stored in the communication system,
independent of the application software in the host. It can be used to construct
effective mechanisms for detecting timing failures of the host. In an ET architecture,
the application software decides dynamically when to send a message. It is thus
difficult to devise an error-detection scheme for the detection of timing failures of a
host in an ET architecture.

6.3.3 Exception Handling

Exception handling is a well-known technique for handling errors that are detected
within a task. After an exception has been raised, either by the software (e.g., invalid
range of a variable) or by the hardware (e.g., arithmetic overflow), control is
transferred to an exception handler. After the exception handler has terminated, control

CHAPTER 6 FAULT TOLERANCE 1 31

is either resumed from the point of exception, or the task is terminated. A number of
programming languages support exception handling by providing appropriate
programming constructs [Bur89, p. 125].

In real-time systems, exception handling must be used with care. The WCET of a
task is extended by the WCET of all exception handlers that can possibly be activated
during the execution of the task. If the exception handler inside a node repairs the
damage within the time constraints that have been specified at the node interface,
then, the fault is corrected; otherwise, the node fails as a unit.

Some of the techniques for implementing fault tolerance, e.g., periodic checkpointing
with recovery in case of a detected error [Lee90], which are useful in non real-time
systems, are difficult to apply in the context of a hard real-time system because of the
unpredictable increase of the WCET in the case of an error. Furthermore, it must be
assured that the checkpoint data are still temporally valid at their point of use (see
Section 5.4).

6.4 FAULT-TOLERANT UNITS

The purpose of a Fault-Tolerant Unit (FTU) is to mask the failures of a node (see
also Section 4.2.3). If a node implements the fail-silent abstraction, then the
duplication of nodes is sufficient to tolerate a single node failure. If the node does not
implement fail-silence, but can exhibit value errors at the host/network interface
CNI, then triple modular redundancy, TMR, must be implemented. We must assume
that the behavior of the nodes is replica determinate, and that the nodes do not exhibit
babbling idiot timing failures in bus systems.

If no assumptions can be made about the failure behavior of a node, i.e., a node can
exhibit Byzantine failures, then four nodes are required to form a fault-tolerant unit.
An example of an architecture that makes no assumptions about failure modes of a
node is the FTTP architecture developed at the Draper Labs (see Section 13.6.3).

6.4.1 Fail-Silent Nodes

A fail-silent node either produces correct results (in the value and time domain), or
does not produce any results at all. In a time-triggered architecture, an FTU that
consists of two fail-silent nodes produces either zero, one, or two correct result
messages. If it produces no message, it has failed. If it produces one or two
messages, it is operational. The receiver must discard redundant result messages. This
is simple if the result messages are idempotent, e.g., if they have state semantics (see
Section 5.5.4).

132 CHAPTER 6 FAULT TOLERANCE

Figure 6.8: Fault-tolerant unit consisting of two fail-silent nodes.

In a bus-based system, an FTU can comprise a shadow node in addition to the two
active nodes [Kop90a]. The shadow node acts as a warm standby: it reads all
messages from the bus, and is fully synchronized with the active nodes, but does not
produce any output messages as long as it is in the "shadow" state. As soon as one
of the active nodes fails, the "shadow" node acquires the output bus slots of the failed
node, and thereby becomes an active node. If the failed node is repaired, it reintegrates
itself as a shadow node. The advantages of such an FTU with a shadow node are:

(i) Whenever an active node fails, the redundancy within the FTU is reestablished
within a short time interval.

(ii) During normal operation the shadow node does not consume any bandwidth of
the communication system.

(iii) During repair of the failed node, the redundancy within the FTU is maintained.

6.4.2 Triple-Modular Redundancy

If a node can exhibit value failures at the CNI with a probability that cannot be
tolerated in the given application domain, then, a fault-tolerant unit must consist of
three nodes and a voter. The voter detects and masks errors in one step by comparing
the three independently computed results, and then selecting the result that has been
computed by the majority, i.e., by two out of three in the triple modular redundant
(TMR) configuration of Fig 6.9.

Figure 6.9: Fault tolerant unit consisting of three nodes with voters.

CHAPTER 6 FAULT TOLERANCE 133

Two different kinds of voting strategies can be distinguished: exact voting and inexact
voting.

Exact Voting: In exact voting, a bit-by-bit comparison of the data fields in the
result messages of the three nodes forming an FTU is performed. If two out of the
three available messages have exactly the same bit pattern, then one of the two
messages is selected as the output of the triad. The underlying assumption is that
correctly operating replica-determinate nodes produce exactly the same results.

Inexact Voting: In inexact voting, two messages are assumed to contain the same

result if the results are within some application-specific interval. Inexact voting must
be used if the replica determinism of the replicated nodes cannot be guaranteed. The
selection of an appropriate interval for an inexact voter is a delicate task: if the
interval is too large, erroneous values will be accepted as correct; if the interval is too
small, correct values will be rejected as erroneous. Practical experiences with inexact
voting have proved to be disappointing [Lal94]. Irrespective of the criterion defined to
determine the "sameness" of two results, there seem to be problems [Rus93, p. 132].

6.4.3 Byzantine Resilient Fault-Tolerant Unit

If no assumption can be made about the failure mode of a node, then, four nodes are
needed to form a fault-tolerant unit (FTU) that can tolerate a single Byzantine (or
malicious) fault. These four nodes must execute a Byzantine-resilient agreement
protocol to agree on a malicious failure of a node. Theoretical studies [Pea80] have
shown that these Byzantine agreement protocols have the following requirements to
tolerate the Byzantine failures of k nodes :

(i) An FTU must consist of at least 3k+1 nodes.

(ii) Each node must be connected to all other nodes of the FTU by k+1 disjoint
communication paths.

(iii) To detect the malicious nodes, k+1 rounds of communication must be executed
among the nodes. A round of communication requires every node to send a
message to all the other nodes.

(iv) The nodes must be synchronized to with a known precision.

An example of an architecture that tolerates Byzantine failures of the nodes is given
in Section 13.6.3.

6.4.4 The Membership Service

The failure of an FTU must be reported in a consistent manner to all operating FTUs
with a low latency. This is the task of the membership service. A point in real-time
when the membership of a node can be established, is called a membership point of
the node. A small temporal delay between the membership point of a node and the
instant when all other nodes of the ensemble are informed in a consistent manner
about the membership, is critical for the correct operation of many safety-relevant
applications.

134 CHAPTER 6 FAULT TOLERANCE

Figure 6.10: Example of an intelligent ABS in a car.

Example: Consider an intelligent ABS (Antiblock System) braking system in a
car, where a node of a distributed computer system is placed at each wheel. A
distributed algorithm in each of the four computers, one at each wheel, calculates the
brake-force distribution to the wheels (Figure 6. 10), depending on the position of the
brake pedal actuated by the driver. If a wheel computer fails or the communication to
a wheel computer is lost, the hydraulic brake-force actuator at this wheel
autonomously transits to a defined state, e.g., in which the wheel is free-running. If
the other nodes learn about the computer failure at this wheel within a short latency,
e.g., a single control loop cycle of about 5 msec, then the brake force can be
redistributed to the three functioning wheels, and the car can still be controlled. If,
however, the loss of a node is not recognized with such a low latency, then, the brake
force distribution to the wheels, based on the assumptions that all four wheel
computers are operational, is wrong and the car will go out of control.

ET Architecture: In an ET architecture, messages are only sent when a significant
event happens at a node. Silence of a node in an ET architecture therefore means that
either no significant event has occurred at the node, or a fail-silent failure has occurred
(the loss of communication or the fail-silent failure of the node). Even if the
communication system is assumed to be perfectly reliable, it is not possible to
distinguish when there is no activity at the node from when a silent node failure

occurs, in an ET architecture. An additional time-triggered service, e.g., a periodic
watchdog service (see Section 10.4.4), must be implemented in an ET architecture to
solve the membership problem.

TT Architecture: In a TT architecture the periodic message send times are the
membership points of the sender. Let us assume that a failed node remains failed for
an interval whose length is greater than the maximum time interval between two
membership points. Every receiver knows a priori when a message of a sender is
supposed to arrive, and interprets the arrival of the message as a life sign at the
membership point of the sender [Kop91]. It is then possible to conclude, from the
arrival of the expected messages at two consecutive membership points, that the node
was alive during the complete interval that is delimited by these two membership
points. The membership of the FTUs in a cluster at any point in time can thus be
established with a delay of one round of information exchange. Because the delay of
one round of information exchange is known a priori in a TT architecture, it is
possible to derive an a priori bound for the temporal accuracy of the membership
service.

CHAPTER 6 FAULT TOLERANCE 135

6.5

The first step following the occurrence of a node failure is a self-test of the node
hardware. If this self-test is successful, then, it can be assumed that a transient fault
led to the failure of the node, since a transient fault afflicts no permanent damage to
the node hardware. The reintegration of the node can be started immediately.

If the self-test shows a permanent node error, or if a transient error occurs repeatedly
within a specified time interval, a permanent hardware fault must be assumed. It is
then necessary to replace the node hardware. In a fault-tolerant system, it must be
possible to replace the hardware while the system is under power.

6.5.1 Finding a Reintegration Point

While a failure can occur at an arbitrary moment outside the control of the system
designer, the proper point of reintegration of a repaired node can be planned by the
system designer. The key issue during the reintegration of a node in a real-time
system is to find a future point in time when the h-state of a node is in synchrony
with the node environment. Because real-time data are invalidated by the passage of
time, rolling back to a past checkpoint can be futile: it is possible and probable that
the progression of time has already invalidated the checkpoint information.

Reintegration is simplified if the h-state that must be reloaded into the reintegrating
node has a small size. It was shown in Section 4.6 that the size of the h-state has a
relative minimum immediately after the completion of an atomic operation.

In a time-triggered distributed system a component operates periodically with a period
called the component cycle. Immediately after the completion of a component cycle,
all atomic operations in the component are completed and the component should be
in a ground state, i.e., all communication channels are flushed, and no task is active
(see Figure 4.10). A point in time when a component is in a ground state, is an ideal
reintegration point because the size of the h-state is minimal. If the h-state is empty
at the ground state, the reintegration of a repaired node is trivial at this moment. In
many situations, however, there is no such a point in time during the lifetime of a
node, when the h-state is completely empty.

6.5.2 Minimizing the H-State

The points in time when a repaired node can be reintegrated into an operational
cluster must be carefully planned during system design. After a reintegration point
has been established, the h-state at this selected reintegration point must be analyzed,
and minimized to simplify the reintegration procedure.

In a first phase, all system data structures must be investigated to locate any hidden
h-state. In particular, all variables that must be initialized must be identified and the
state of all semaphores and operating system queues at the reintegration point must
be checked. It is good programming practice to output the h-state of the task in a
special output message when a task with h-state is detected, and to re-read the h-state

REINTEGRATION OF A REPAIRED NODE

136 CHAPTER 6 FAULT TOLERANCE

of the task when the task is re-activated (see also Figure 4.8). This discerns the h-
state, and makes it possible to pack all h-states of the tasks of a node into an h-state

message particular to this node.

Figure 6.11: Partitioning of the h-State.

In a second phase, the identified h-state must be analyzed and minimized. Figure 6.1 1
displays a suggested division of the h-state information into three parts:

(i) This part of an h-state consists of input data that can be retrieved from the
instrumentation in the environment. If the instrumentation is state-based, and
sends the absolute values of the RT entities (state messages) rather than their
relative values (event messages), then, a complete scan of all the sensors in the
environment can establish a set of current images in the reintegrating node, and
thus resynchronize the node with the external world.

This part of the h-state consists of output data that are in the control of the
computer, and can be enforced on the environment. We call the set of the output
data a restart vector. In a number of applications, a restart vector can be defined
at development time. Whenever a node must be reintegrated, this restart vector
is enforced on the environment to achieve agreement with the outside world. If
different process modes require different restart vectors, a set of restart vectors
can be defined at development time, one for each mode. For example, when a
traffic control system is restarted, it is possible to enforce a restart vector on the
traffic lights that sets all cross-road lights first to yellow, and then to red, and
finally turns the main street lights to green. This is a relatively simple way to
achieve a synchronization between the external world and the computer system.
The alternative, which involves the reconstruction of the current state of all
traffic lights from some log file that recorded the output commands until the
point of failure, would be more complicated.

(iii) This part of the h-state contains h-state data that do not fall into category (i) or
category (ii). This part of the h-state must be recovered from some node-external
source: either from an operator, or from some other node that has stored this
information redundantly. In some situations, a redesign of the process
instrumentation may be considered to transform h-state of category (iii) into h-
state of category (i).

(ii)

CHAPTER 6 FAULT TOLERANCE 137

In a system with replicated nodes in an FTU, the h-state data that cannot be retrieved
directly from the environment must be communicated from one node of the FTU to
the other nodes of the FTU by means of an h-state message. In a TT system, sending
such an h-state message should be part of the standard component cycle. This
"externalization" of the h-state of a node facilitates the validation of the node as well.

6.5.3 Node Restart

The restart of a node after a failure can proceed as follows: once powered up, the node
performs a self-test, and verifies the correctness of its i-state by checking the provided
signatures in the i-state data structures. If the i-state is erroneous, a copy of the static
i-state must be reloaded from stable storage. In a second step, the node scans all
instruments, and waits for a cluster cycle to acquire all available current information
about its environment. After an analysis of this information, the node decides the
mode of the controlled object, and selects the restart vector that must be enforced on
the environment. Finally, after having retrieved the class (iii) h-state information
from an external source, or from the replicated partner node in the FTU, the node
starts its task in synchrony with the rest of the cluster.

6.6 DESIGN DIVERSITY

Example: The following quotes are taken from the press report on the failure of the
Ariane 5 rocket on June 4, 1996 [Lio96]:

The failure of the Ariane 501 was caused by the complete loss of guidance and

attitude information 37 seconds after start of the main engine ignition sequence. This

loss of information was due to specification and design errors in the software of the

inertial reference system. . , . The problem boils down to a single ADA routine that

was supposed to do data conversion during on-ground alignment operations. This

alignment software was intentionally left running into the early part of the flight to

allow for late countdown stoppages. This software was lifted from Ariane 4, but key

things differ between Ariane 4 and Ariane 5. The software raised an exception (that

was completely predictable based on the flight path of Ariane 5 versus Ariane 4) and

there was no fault-protection mechanism for this exception, so the guidance processor

halted. The backup guidance CPU went through exactly the same routine, failing one

cycle earlier in the same way. . . . The reason behind this drastic action lies in the

culture within the Ariane program of only addressing random hardware failures. From

this point of view the exception–(or error)–handing mechanisms are designed for

random hardware failure which can quite rationally be handled by a backup system.

Field data on the observed reliability of many large computer systems [Gra93,p. 104]
indicate that a significant and increasing number of computer system failures is
caused by design errors in the software, and not by physical faults of the hardware.
While the problems of random physical hardware faults can be solved by applying
redundancy, as presented in this chapter, no generally accepted procedure to deal with
the problem of software errors has emerged. The techniques that have been developed

138 CHAPTER 6 FAULT TOLERANCE

for handling hardware faults are not directly applicable to the field of software,
because there is no physical process that causes the aging of the software.

Software errors are design errors that have their root in the unmanaged complexity of
a design. Because many hardware functions of a complex VLSI chip are implemented
in microcode that is stored in a ROM, the possibility of a design error in the
hardware must be considered in a safety-critical system. The issue of a single design
error that is replicated in the software of all nodes of a distributed system warrants
further consideration. It is conceivable that an FTU built from nodes based on the
same hardware, and using the same system software, exhibits common-mode failures
caused by design errors in the software or in the hardware (microprograms).

Three major strategies to attack the problem of unreliable software are discussed in
the ARINC document on "Software Considerations in Airborne Systems and
Equipment Certification" [ARI92]:

(i) To improve the understandability of a software system by introducing a clean
conceptual structure and simplifying programming paradigms. The techniques
of structured programming and object-oriented design fall into this category
[Mey88].

(ii) To apply formal methods in the software development process so that the
specification can be expressed in a rigorous form. It is then possible to verify
formally–within the limits of today's technology–the consistency between a
high-level specification expressed in a formal specification language, and the
implementation [Rus93]. The possibilities and limitations of formal methods
are discussed in Section 12.2.

(iii) To design and implement diverse versions of the software analogous to the
replication of hardware modules, so that a failure in one version can be detected
and masked by the other versions [Vog88].

Over the last few years, an ongoing debate has been attempting to decide which one
of these strategies is the most promising, and should be followed widely. In our
opinion, these three strategies are not contradictory, but complementary. An
understandable and well-structured software system is a prerequisite for the application
of any of the other two techniques, i.e., program verification and software diversity.
In safety-critical real-time systems, all three strategies should be followed to reduce
the number of design errors to a level that is commensurate with the requirement of
ultra-high dependability.

6.6.1 Diverse Software Versions

Design diversity is based on the hypothesis that different programmers using different
programming languages and different development tools, don't make the same
programming errors. This hypothesis has been tested in a number of controlled
experiments with the result that it is only partially correct [Avi85]. Design diversity
increases the overall reliability of a system. It is, however, not justified to assume
that the errors in the diverse software versions are statistically independent [Kni86].

CHAPTER 6 FAULT TOLERANCE 139

The detailed analysis of field data of large software systems reveals that a significant
number of system failures can be traced to flaws in the system specification. To be
more effective, the diverse software versions should be based on different
specifications. This complicates the design of the voting algorithm. As was already
mentioned, practical experience with non-exact voting schemes has not been
encouraging.

What place does software diversity have in safety critical real-time systems? The
following case study of a fault-tolerant railway signaling system that was installed in
a number of train stations to increase the safety and reliability of the train service is a
good example of the practical utility of software diversity.

6.6.2 An Example of A Fail-safe System

The VOTRICS train signaling system that has been developed by Alcatel [Kan95a] is
an industrial example of the application of design diversity in a safety-critical real-
time environment. The objective of a train signaling system is to collect data about
the state of the tracks in train stations, i.e., the current positions and movements of
the trains and the positions of the switches, and to set the signals and shift the
switches such that the trains can move safely through the station according to the
given timetable entered by the operator. The safe operation of the train system is of
utmost concern.

The VOTRICS system is partitioned into two independent subsystems. The first
subsystem accepts the commands from the station operators, collects the data from
the tracks, and calculates the intended position of the switches and signals so that the
train can move through the station according to the desired plan. This subsystem uses
a TMR architecture to tolerate a single hardware fault.

The second subsystem, called the safety bag, monitors the safety of the state of the
station. It has access to the real-time database and the intended output commands of
the first subsystem. It dynamically evaluates safety predicates that are derived from
the traditional "rule book" of the railway authority. In case it cannot dynamically
verify the safety of an intended output state, it has the authority to block the outputs
to the switching signals, or to even activate an emergency shutdown of the complete
station, setting all signals to red and stopping all trains. The safety bag is also
implemented on a TMR hardware architecture.

The interesting aspect about this architecture is the substantial independence of the
two diverse software versions. The versions are derived from completely different
specifications. Subsystem one takes the operational requirements as the starting point
for the software specification, while subsystem two takes the established safety rules
as its starting point. Common mode specification errors can thus be ruled out. The
implementation is also substantially different. Subsystem one is built according to a
standard programming paradigm, while subsystem two is based on expert-system
technology. If the rule-based expert system does not come up with a positive answer
within a prespecified time interval, then, a violation of a safety condition is assumed.

140 CHAPTER 6 FAULT TOLERANCE

It is thus not necessary to analytically establish a WCET for the expert system
(which would be very difficult).

The system has been operational in different railway stations over a number of years.
No case has been reported where an unsafe state remained undetected. The independent
safety verification by the safety bag also has a positive effect during the commission
phase, because failures in subsystem one are immediately detected by subsystem two.

6.6.3 Multilevel System

The technique described above can also be applied to fail-operational applications that
are controlled by a two-level computer system (Figure 6.12). The higher-level
computer system provides full functionality, and has a high-error detection coverage.
If the high-level computer system fails, an independent and differently designed lower-
level computer system with reduced functionality takes over. The reduced
functionality must be sufficient to guarantee safety.

Figure 6.12: Multilevel computer system with diverse software.

Such an architecture has been deployed in the computer system for the space shuttle
[Lee90, p.297]. Along with a TMR system that uses identical software, a fourth
computer with diverse software is provided in case of a design error that causes the
correlated failure of the complete TMR system. Diversity is deployed in a number of
existing safety critical real-time systems, as in the Airbus fly by wire system
[Tra88], in railway signaling [Kan95a], and in nuclear applications [Vog88].

POINTS TO REMEMBER

• A failure is an event that denotes a deviation between the actual service and the
specified or intended service, occurring at a particular point in real time.

To tolerate k failures of a certain type, we need k+l components if the failures
are fail-silent, 2k +1 components if the failures are fail-consistent, and 3k +1

components if the failures are malicious (Byzantine).

•

CHAPTER 6 FAULT TOLERANCE 141

The failure rate (permanent failures) of a high quality chip stabilizes in a range
between 10–100 FITS (1 FIT means 1 failure per 109 hours, i.e., a MTTF of
about 115 000 years).

An error is a discrepancy between the intended correct state and the current state

of a system. Error detection requires knowledge about the intended correct state.

The knowledge about the intended correct state can arise from two different
sources: either from a priori knowledge about the intended properties of the
states and behaviors of the computation, or from the comparison of the results
of two redundant computational channels.

Systematic fault tolerance provides the fault-tolerance mechanism at the level of
the architecture by using replicated hardware. Application-specific fault tolerance
intertwines fault-tolerance functions and application functions, thus increasing
the software complexity.

A fail-silent node must detect all internal failures within a short latency, and
must map these failures to a single external failure mode, a fail-silent node
failure.

Knowledge about the regularity in the activation pattern of a computation can
be used to detect errors in the temporal domain.

The cause of an error, and thus indirectly of a failure, is called a fault.

Large systems have many operational states between fully operational and non-
operational. As long as a node provides the minimum-service level, it is
classified as operational.

A node that sends messages at the wrong moment is called a babbling idiot. A
babbling-idiot timing failure is the most serious failure of a node in a system
with a shared communication channel, e.g., a bus system.

In real-time systems exception handling must be used with care. The WCET of
a task is extended by the WCET of all exception handlers that can possibly be
activated during the execution of the task.

In exact voting, a bit-by-bit comparison of the data fields in the redundant result
messages is performed. Exact voting requires replica determinate computational
channels.

In inexact voting two messages are assumed to contain the same result if the
results are within some application-specific interval. Inexact voting must be
used if replica determinism of the replicated nodes cannot be guaranteed.

The practical experiences with inexact voting are disappointing. Whatever
criterion is defined to determine the "sameness" of two results, it seems to be
wrong.

Byzantine agreement requires an FTU to contain at least 3k+1 nodes. Each node
must be connected to all other nodes of the FTU by k+1 disjoint
communication paths. To detect the malicious nodes, k+1 rounds of
communication must be executed among the nodes, and the nodes must be
synchronized with a known precision.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

142 CHAPTER 6 FAULT TOLERANCE

The temporal delay between the membership point of a node and the point
where all other nodes of the ensemble are consistently informed about the
membership, must be small for the correct operation of many safety-relevant
applications.

Even if the communication system is assumed to be perfectly reliable, it is not
possible to distinguish when there is no activity at the node from when a silent

node failure occurs in an ET architecture.

The key issue during the reintegration of a node in a real-time system is to find
a future point in time when the h-state of a node is in synchrony with the node
environment.

A point in time, when a component is in a ground state, is an ideal
reintegration point, because the size of the h-state is minimal.

Software errors are design errors that have their root in the unmanaged
complexity of a design. Because many hardware functions of a complex VLSI
chip are implemented in microcode that is stored in ROM, the possibility of a
design error in the hardware must be taken into consideration in a safety-critical
system.

Design diversity increases the overall reliability of a system. It is, however, not
justified to assume that the errors in the diverse software versions are
statistically independent.

If, in a multilevel fail-operational computer architecture, the high-level
computer system fails, an independent and differently designed lower-level
computer system with reduced functionality takes over. This reduced
functionality must be sufficient to guarantee the safety.

•

•

•

•

•

•

BIBLIOGRAPHIC NOTES

The Proceedings of the annual Symposium on Fault-Tolerant Computing (FTCS),
published by the IEEE, is the world's premier forum for discussing the advances in
the field of fault-tolerant computing, A good introduction to the field of fault-tolerant
computing is given in the books of Lee and Anderson "Fault Tolerance, Principles
and Practice" [Lee90],"Design and Analysis of Fault-Tolerant Digital Systems" by
Johnson [Joh89], and "Fault Tolerance in Distributed Systems" by Jalote [Jal94].
The excellent paper "Understanding Fault-Tolerant Distributed Systems" by Cristian
[Cri91] is a required reading. "The Design of Predictably Dependable Computing
Systems" was the topic of the European ESPRIT Basic Research Project PDCS.
Results of this project are published in a book [Ran95] that contains many relevant
papers on the topic discussed in this chapter. Suri, Walter and Hugue have put
together many of the archival papers on ultra-dependable systems in their tutorial on
"Advances in Ultra-Dependable Systems" [Sur95].

•

CHAPTER 6 FAULT TOLERANCE 143

REVIEW QUESTIONS AND PROBLEMS

6.1

6.2

6.3

Give the precise meaning of the terms failure, error, and fault.

What are typical permanent and transient failure rates of VLSI chips?

The following fault is observed in the field: before installation, the proper
operation of each of a batch of single chip microcontrollers was tested at the
usual test points of -20° C, 0° C, + 20° C, + 40° C, + 60° C, and at +80° C.
During operation, every fifth chip from the batch failed at about -12° C,
although it operated correctly at -20° C and at 0° C.

How would you classify this fault? How can this fault be detected if this chip
is part of large distributed system? What is the probability that a TMR system
built out of three such microcontrollers would fail at -12° C?

Why is a short recovery time from transient faults important?

What are the basic techniques for error detection? Compare ET systems and TT
systems from the point of view of error detection.

Discuss the topic of exception handling in real-time systems.

Discuss the different types of errors that can be detected by redundant
computations.

What is a membership service? Give a practical example for the need of a
membership service. What is the quality parameter of the membership service?
How can you implement a membership service in an ET architecture?

6.9 What is the most serious error in a distributed system with a shared
communication channel, e.g., a bus? Why?

6.10 Assume a computer system that can control three concurrently operating trains
running on a model railway track, containing 10 switches and 15 signals.

Identify the h-state at the reintegration point. Which part of the h-state can be
enforced on the environment at the reintegration point? What is the minimal
remaining h-state at the reintegration point?

6.11 What is a restart vector? Give an example.

6.12 Fault tolerance can be implemented by two fail-silent components or by
TMR. Discuss the advantages and disadvantages of each one of these methods.

6.13 What are the arguments for, and against, using diverse hardware units in a
safety-critical real-time application with replicated hardware channels?

6.14 What are the advantages and limits of design diversity? Why is it easier to
deploy design diversity in fail-safe applications than in fail-operational
applications?

6.4

6.5

6.6

6.7

6.8

This page intentionally left blank.

Chapter 7

Real-Time Communication

OVERVIEW

This chapter commences by articulating the requirements of a real-time
communication system: low protocol latency with minimal jitter, support for
composability, and the need for fast error detection at the receiver. Section 7.2
elaborates on the important topic of flow control, and distinguishes between two
different types of flow control, implicit and explicit flow control. The Positive
Acknowledgment and Retransmission (PAR) protocol, the most prominent explicit
flow-control protocol, is evaluated from the point of view of real-time performance.
It is shown that a number of characteristics of the PAR protocol are in conflict with
the requirements of real-time systems. In Section 7.3 a communication architecture
for a distributed real-time system is presented. This architecture consists of three
communication subsystems: a low-cost field bus for interconnecting sensors and
actuators, a fault-tolerant real-time network for interconnecting the nodes, and a
backbone bus for interconnecting a cluster with other non real-time systems.

In Section 7.4 some fundamental conflicts in the design of real-time protocols are
highlighted. For example, the requirement for flexibility is in conflict with many
other desirable protocol properties, such as composability, error detection, and replica
determinism. These conflicts have lead to the design of many different real-time
protocols that try to bridge the gap between these conflicting requirements. Some of
these protocols, such as the CAN (Control Area Network), the ARINC 629 and the
TTP (Time Triggered Protocol) are discussed in Section 7.5 and compared. Section
7.6 compares the performance of an event-triggered and time-triggered
implementation of an alarm monitoring system.

There is an interdependency between the protocol requirements and the layout of the
physical protocol layer. The final section is devoted to the physical protocol layer,
and a short discussion on transmission codes.

146 CHAPTER 7 REAL-TIME COMMUNICATION

7.1 REAL-TIME COMMUNICATION REQUIREMENTS

The previous chapters discussed the characteristics of hard real-time applications, and
presented a set of architectural requirements for communication in a distributed real-
time system. This section looks at these requirements that have their root in the
necessity for a small and predictable latency of real-time transactions. The first part is
a short summary of the material covered in the previous chapters as it relates to the
communication system.

7.1.1 Protocol Latency

The protocol latency is the time interval between the start of transmission of a
message at the communication network interface (CNI) of the sending node, and the
delivery of this message across the CNI of the receiving node. To support a
consistent behavior of the distributed system as a whole, the message should be
permanent when delivered across the CNI to the host of a node.

Latency Jitter: A real-time communication protocol should have a predictable and
small maximum protocol latency and a minimal jitter. The application programs in
the host often rely on this a priori known predictable latency. Any variation in the
protocol latency, e.g., such as that caused by a jitter that is introduced in handling
communication failures by time-redundancy, affects the operation of the application
programs adversely.

Simultaneous Delivery in Multicast: The standard communication topology
in distributed real-time systems is multicast, not point-to-point. The same image of
an RT entity is needed at a number of different nodes, e.g., at the man-machine
interface, at a process-model node, and at an alarm-monitoring node. A message
should be delivered at all receiver CNIs within a short and known time interval.

7.1.2 Support for Composability

Section 2.2 identified composability as the most important property of a real-time
system architecture. The communication system plays a central role in establishing
composability by the following two means:

Temporal Encapsulation of the Nodes: The communication system should
erect a temporal firewall around the operation of a host, forbidding the exchange of
control signals across the CNI. Thus, the communication system becomes
autonomous and can be implemented and validated independently of the application
software in the host. The timing properties of the application software in a
temporally encapsulated host can also be validated in isolation.

Fulfilling the Obligations of the Client: A server that is implemented in
the host of a node can only guarantee its deadlines if the clients fulfill their
obligation: not to overload the server with too many, or uncoordinated, service

CHAPTER 7 REAL-TIME COMMUNICATION 147

requests. The communication system should exercise flow control over the requests
from the clients, and assist in fulfilling the temporal obligations of the client.

7.1.3 Flexibility

Many real-time communication systems must support different system
configurations that change over time. A real-time protocol should be flexible to
accommodate these changes without requiring a software modification and retesting of
the operational nodes that are not affected by the change. Since the bandwidth of any
communication channel is limited, there exists an upper bound on the increase in
communication traffic that can be handled within the given time constraints.

Example: A communication system within a car must support different
configurations of nodes, depending on customer demand. One customer might demand
a car with a sunroof, a computer controlled radio, and automatic seats with memory,
while another customer might opt for an air-conditioning system and a sophisticated
anti-theft system. All possible combinations of nodes must be supported by the
communication system without a need for retesting existing nodes.

Flexibility is also required to service important sporadic messages, such as an
"emergency shutdown" message, with minimal delay.

7.1.4 Error Detection

Communication Errors: The communication system must provide predictable
and dependable service. Errors that occur during the message transmission must be
detected, and should be corrected without increasing the jitter of the protocol latency.
If an error cannot be corrected, all the communicating partners, the sender and all the
receivers, must be informed about the occurrence of the error with a low latency. In a
real-time system, the detection of message loss by the receiver of a message is of
particular concern.

Example: Consider a node, at a control valve, that receives output commands from
another node. In case the communication is interrupted because the wires are cut, the
control valve node should enter a safe state autonomously, e.g., it should close the
valve. The communication system must inform the control valve node about the loss
of communication with a low error detection latency.

In a distributed real-time system, it can happen that external electromagnetic
interference (EMI), e.g., a flash of lightning, causes the correlated mutilation of all
messages on the communication system. We call such a phenomenon a blackout.

Blackouts normally last only for a few milliseconds, or for even a shorter period of
time. The communication system should detect such a blackout, and continue with
its operation as soon as the blackout disappears. Such a service is called blackout

management.

Detection of Node Errors: The failure of a node must be detected by the
communication protocol, and must be reported consistently to all the remaining
nodes of the ensemble. In real-time systems, the prompt and consistent detection of

148 CHAPTER 7 REAL-TIME COMMUNICATION

node failures at both the receiver and at the sender is important. This is the function
of the membership service.

End-to-End Acknowledgment: In a real-time system, the end-to-end
acknowledgment about the success or failure of a communication action can arise
from a node that is different from the receiver of an output message. An output
message to an actuator in the environment should cause some effect in the
environment. This effect is monitored by an independent sensor. The results observed
by this sensor ensure that the desired action of the message has actually been
achieved. This is an example of an end-to-end protocol such as that required at the
interface between the computer system and the controlled object.

Example: Figure 7.1 shows an example of an end-to-end acknowledgment of the
output message to a control valve by a flow sensor that is connected to a different
node.

Figure 7.1: End-to-end acknowledgment in real-time systems.

Example: A wrong end-to-end protocol can have serious consequences, as seen in
the following quote [Sev81] regarding the Three Mile Island Nuclear Reactor #2
accident on March 28, 1979:

Perhaps the single most important and damaging failure in the relatively long chain

of failures during this accident was that of the Pressure Operated Relief Valve

(PORV) on the pressurizer. The PORV did not close; yet its monitoring light was

signaling green (meaning closed).

In this system, the fundamental design principle "never trust an actuator", was
violated. The designers assumed that the acknowledged arrival of a control output
signal that commanded the valve to close, implied that the valve was closed. Since
there was an electromechanical fault in the valve, this implication was not true. A
proper end-to-end protocol that mechanically sensed the closed position of the valve
would have avoided this catastrophic false information.

7.1.5 Physical Structure

The physical structure of a real-time communication system is determined by
technical and economic considerations. The multicast communication requirement

CHAPTER 7 REAL-TIME COMMUNICATION 149

suggests a communication structure that supports multicasting at the physical level,
e.g., a bus or a ring network. A fully connected point-to-point communication
architecture that provides single-hop broadcasting requires N-1 communication ports
at each node, in an ensemble of N nodes. For many applications, the high cost of
several communication ports at each node, the physical drivers at each node, and the
cabling are prohibitive in a point-to-point network.

Bus versus Ring: The decision as to whether the physical network should be
based on a bus or a ring structure is less clear. In an automotive environment, where
the physical interconnection is realized by twisted pair wires, a bus structure is more
attractive than a ring structure because of its simpler interface and better resilience
with respect to fail-silent node failures. The simultaneous arrival of a message at all
nodes is another advantage of a bus over a ring. On the other hand, if optical fibers
form the physical medium, a ring structure is advantageous because the point-to-
point connection of fibers is simpler than the construction of a fiber-based bus.

Physical Separation of the Nodes Forming an FTU: In a fault-tolerant
system that is based on active redundancy, the nodes (Smallest Replaceable Units–
SRUs) that form a Fault-Tolerant Unit (FTU) should be physically separated so that
a single physical event cannot cause a common-mode failure of all SRUs.

Example: Consider a car with a steer-by-wire system. The SRUs that form an FTU
for this critical function should be at different locations within the car so that a
physical damage of a section of the car during an accident will not result in the
correlated loss of the safety critical system function of all SRUs.

7.2 FLOW CONTROL

Flow control is concerned with the control of the speed of information flow between
a sender and a receiver in such a manner that the receiver can keep up with the sender.
In any communication scenario, it is the receiver, rather than the sender, that
determines the maximum speed of communication. In the following, two types of
flow control are distinguished, explicit flow control and implicit flow control.

7.2.1 Explicit Flow Control

In explicit flow control, the receiver sends an explicit acknowledgment message to
the sender, informing the sender that the sender's previous message arrived correctly,
and that the receiver is now ready to accept the next message. Explicit flow control is
based on the sometimes overlooked assumption that the sender is within the sphere
of control (SOC) of the receiver, i.e., that the receiver can exert back pressure on the
sender to control the rate of transmission (back-pressure flow control). The most
important protocol with explicit flow control is the well-known Positive-
Acknowledgment-or-Retransmission (PAR) protocol.

The PAR Protocol: The PAR protocol is an event-triggered one. Given a sender,
a receiver, a communication medium, a time-out value, and a retry counter, the basic

150 CHAPTER 7 REAL-TIME COMMUNICATION

PAR protocol operates as follows: whenever a sender is asked by its client to send a
new message, the sender initializes a retry counter to zero, starts a local time-out
interval, and sends the message to the receiver by way of the communication
medium. When the sender receives an acknowledgment message from the receiver
within the specified time-out interval, it informs its client of the successful
transmission, and duly terminates. If the sender does not receive a positive
acknowledgment message from the receiver within the specified time-out interval, the
sender checks the retry counter to determine whether the given maximum number of
retries has already been exhausted. If so, the sender aborts the communication, and
informs its client about the failure. If not, the sender increments the retry counter by
one, resends the message, starts the local time-out again, and waits for an
acknowledgment message of the receiver. If a new message arrives at the receiver, the
receiver checks whether this message has already been received. If not, the receiver
sends an acknowledgment message to the sender, and delivers the message to its
client. If the receiver has already received the message, it just sends another
acknowledgment message back to the sender. Note that the point in time at which the
sender's client is informed about the successful transmission, can be significantly
different from the point in time at which the receiver's client accepts the delivery of
the message.

Many variants of the basic PAR protocol are known, but they all rely on the
following principles:

(i) The client at the sender's site initiates the communication.

(ii) The receiver has the authority to delay the sender via the bi-directional
communication channel.

(iii) A communication error is detected by the sender, and not by the receiver. The
receiver is not informed when a communication error has been detected.

(iv) Time redundancy is used to correct a communication error, thereby increasing
the protocol latency in case of errors.

Figure 7.2: Distribution of latencies of a typical PAR protocol.

The protocol latency distribution of a typical PAR protocol with a retry counter of 2
is shown in Figure 7.2. In most cases, the first message transmission is successful.
Therefore, immediately after the minimum protocol latency dmin, there is a peak in

CHAPTER 7 REAL-TIME COMMUNICATION 151

the density distribution of the protocol execution times. After the second attempt,
another increase in the probability of success can be seen, and similarly for the third
attempt before the transmission efforts are finally abandoned at dmax.

Example: Action Delay of PAR. Consider a bus system without global time
where a token protocol controls media access to the bus. The token protocol has a
maximum token rotation time TRT of 10 msec. The time needed to transport the
message on the bus is 1 msec. The granularity of the local clock can be neglected. A
PAR protocol is implemented at the transport level on top of the medium access
protocol. The time-out in the PAR must be set to at least 22 msec, so that the miss
of the token in each direction is covered. In the best case (dmin), if the sender has the

token when the sender's client asks to send a new message, the receiver receives the
message after 1 msec. In the worst case (dmax), the message transmission takes 55

msec, i.e., when the second retry, occurring after 44 msec, is successful, but the
message is delayed for another 10 msec at the sender until the token becomes
available. The error detection latency of this PAR protocol is 66 msec, because the
sender reports an error to its client after three time-outs, 22 msec each, have elapsed.

The jitter of this PAR protocol is 54 msec. According to Section 5.5.2, the action
delay in such a system is 2dmax - dmin, i.e., 109 msec. Although in most cases the

message will arrive at the receiving node within one token round, i.e., 11 msec, the
receiver must hold the message for another 98 msec before it becomes permanent. If
global time with a granularity of 100 µsec was available, then, the message becomes
permanent after dmax+ 2g, i.e., 55.2 msec after its transmission.

7.2.2 Implicit Flow Control

In implicit flow control, the sender and receiver agree a priori, i.e., at system start
up, on the points in time when messages are sent. This requires the availability of a
global time-base. The sender commits itself to send a message only at the agreed
points in time, and the receiver commits itself to accept all messages sent by the
sender, as long as the sender fulfills its obligation. No acknowledgment messages are
exchanged during run time. Error detection is the responsibility of the receiver, which
knows (by looking at its global clock) when an expected message fails to arrive.

In implicit flow control, fault tolerance can be implemented by active redundancy,
i.e., sending k physical copies of every message (if possible by way of different
channels). As long as at least one of the k copies arrives, the communication is
successful. In implicit flow control, the number of messages that must be delivered
by the communication system is always constant. Communication is unidirectional
because there is no need for a return channel from the receiver to the sender. Thus,
implicit flow control is well-suited to multicast communication.

7.2.3 Thrashing

The often observed phenomenon of the throughput of a system decreasing abruptly
with increasing load, is called thrashing. Thrashing can be observed in many

152 CHAPTER 7 REAL-TIME COMMUNICATION

systems, and is not limited to computer systems; Consider the example of a traffic
system in a large city. The throughput of the road system increases with increasing
traffic up to a certain critical point. When this critical point is reached, further
increase in traffic can lead to a reduction in throughput, or in other words, a "traffic
jam".

Many systems can be characterized by a throughput-load dependency as shown in
Figure 7.3.

Figure 7.3: Throughput-load characteristic.

An ideal system exhibits the load throughput curve labeled ideal in Figure 7.3. The
throughput increases with increasing load until the saturation point has been reached.
Thereon, the throughput remains constant. A system has a controlled load-throughput
characteristic if the throughput increases monotonically with the load and reaches the
maximum throughput asymptotically. If the throughput increases up to a certain
point, the thrashing point, and thereafter decreases abruptly, then, we say the system
is thrashing.

Real-time systems must be free of the thrashing phenomena. If a real-time system
contains a mechanism that can cause thrashing, then, it is likely that the system fails
in the important rare-event scenarios discussed in Section 1.5.

Mechanisms that can Cause Thrashing: Mechanisms that require a more
than proportional increase in resources as the load increases, are prone to cause
thrashing. Two examples of such mechanisms are:

(i) The retry mechanism in the PAR protocol: If a communication system slows
down because it can barely handle the offered load, a high-level PAR protocol
reaches its time-outs, and generates additional load.

Operating system services: In a dynamic scheduling environment, the time
needed to find a feasible schedule increases more than linearly as the offered load
reaches the capacity limit. This increase in the amount of scheduling overhead
further decreases the computational resources that are available for the
application tasks. The same arguments hold for the overhead required for queue
management.

The only successful technique to avoid thrashing in explicit flow-control schemes is
to monitor the resource requirements of the system continuously and to exercise a

(ii)

CHAPTER 7 REAL-TIME COMMUNICATION 153

stringent back-pressure flow control as soon as a decrease in the throughput is
observed.

7.2.4 Flow Control in Real-Time Systems

Table 7.1 compares the characteristics of explicit flow control and implicit flow
control, and contrasts them with the requirements of hard real-time systems. This
comparison suggests that implicit flow control is better suited for real-time systems
than explicit flow control.

Table 7.1: Explicit versus implicit flow control.

From the point of view of flow control, the most critical interface in a real-time
system is the process interface between the controlled object and the computer
system. It cannot be assumed that all events occurring in the controlled object are in
the sphere of control of the computer system. If, in an event-triggered system, more
events occur in the controlled objects than have been anticipated by the designer,
then, the computer system may be overloaded by such an "event shower", and thereby
miss important deadlines (Figure 7.4).

Example: On August 8, 1993 a prototype of a fly-by-wire fighter plane crashed,
because the plane responded too slowly to the pilot's commands [Neu95, p.37].

Figure 7.4: Explicit flow control in a real-time system.

Example: Consider a monitoring and control system for an electric power grid.
There may be more than 100,000 different RT entities and alarms that must be

154 CHAPTER 7 REAL-TIME COMMUNICATION

monitored continually. In the case of a rare event, such as a severe thunderstorm
when a number of lightning strikes hit the power lines within a short interval of
time, many correlated alarms will occur. The computer system cannot exercise
explicit flow control over these alarms in case the system enters the thrashing zone.

Interface between Implicit and Explicit Flow Control: It is difficult to
design the interface between a producer subsystem that uses implicit flow control and
a consumer subsystem that uses explicit flow control. While the subsystem that uses
implicit flow control produces information at an a priori known rate, the consumer
subsystem with explicit flow control can consume information only at the speed
determined by its receivers. In order not to lose any information, adequate buffering
must be provided at this interface. Determining the proper buffer size is a delicate
design issue that is often ignored at the design level, and left to the programmer at
the end of the line.

7.3 OSI PROTOCOLS FOR REAL-TIME?

Can a real-time system be built on top of a communication system that conforms to
the OSI architecture? This is a relevant question, because many available
implementations of communication systems use the OSI reference model [Tan89].

7.3.1 The OSI Reference Model

The purpose of the OSI reference model is to provide a standard conceptual reference
architecture so that two computers that are located anywhere in the world can
communicate with each other via diverse interconnected computer networks. For this
purpose, a seven layer model (Figure 7.5) was introduced. Each layer encapsulates a
protocol that is devoted to solve one particular aspect of the communication problem,
using the services of the lower layer, and providing more powerful services to the
higher lavers.

Figure 7.5: The OSI protocol stack.

Although the OSI architecture was originally meant to be a conceptual reference

architecture, it is often used as an implementation architecture, resulting in
implementations where a stack of PAR protocols, one in each layer, must be
executed before a message is delivered at the application process. These
implementations are characterized by high latency jitter and low data efficiency.

CHAPTER 7 REAL-TIME COMMUNICATION 155

The following detailed assumptions are at the base of many OSI conforming protocol
implementations:

(i) The two communicating partners maintain a point-to-point connection.

(ii) The messages are event-triggered.

(iii) The communication protocols are of the PAR type with explicit flow control
between sender and receiver and retransmission in case of an error.

(iv) Real-time performance, i.e., latency and latency jitter, is not an issue.

These assumptions do not match up with the requirements of hard real-time systems.

7.3.2

The Asynchronous Transfer Mode (ATM) communication technology has been
developed to provide real-time communication with low jitter over broadband
networks. The information is packed into ATM cells, i.e., fixed-sized packets of 53

bytes, consisting of a header of 5 bytes and 48 data bytes. The header contains the
control information for the identification and routing of the packet (Figure 7.6). The
data bytes can encode any type of data: voice, video, FAX, or computer data.

Asynchronous Transfer Mode (ATM) and Real Time

Figure 7.6: Structure of an ATM cell.

On the basic level, an ATM channel carries interleaved periodic ATM cells from
different sources. The ATM switches at the ends of a channel performs the
multiplexing and demultiplexing of the ATM streams. The application is free to
decide which end-to-end protocols to implement on top of the basic ATM service.
For example, a higher level ATM protocol can provide forward error correction to
increase the reliability of the channel without introducing unpredictable jitter
[Kim95]. From the point of view of real-time performance, ATM technology is well-
suited to provide basic communication services for wide area real-time systems.

7.3.3 Real-Time Communication Architecture

In many real-time applications, three different types of communication networks are
distinguished, the field bus, the real-time network, and the backbone network
(Figure 7.7). Two of these networks, the field bus and the real-time network, must
provide guaranteed temporal performance.

156 CHAPTER 7 REAL-TIME COMMUNICATION

Figure 7.7: Real-time communication architecture.

Field Bus: The purpose of the field bus is to interconnect a node of the distributed
computer system to the sensors and actuators in the controlled object. The node often
acts as the central field bus controller. Sensors and actuators are often controlled by a
local single-chip microcontroller that has a standard UART (Universal Asynchronous
Receiver Transmitter) interface. Field bus messages have a short data field, containing
state data, typically two bytes in length, and are transmitted periodically with strict
real-time requirements for latency and latency jitter. Precise clock synchronization
should therefore be provided at the field bus level. On the other hand, fault tolerance
is not a major issue at the field bus level, since the reliability bottleneck is in the
sensors and actuators. If fault tolerance is needed, redundant sensors that are
interconnected by independent field buses to different nodes of the real-time cluster
can be provided. The main concern at the field bus level is low cost, both for the
controllers and for the cabling. Standard unshielded twisted pair wiring is commonly
used to connect the sensors and actuators to the controlling node.

Real-time Network: The real-time network is at the core of the real-time cluster,
and must provide the following services to the nodes in the cluster:

(i) Reliable and temporally predictable message transmission with low latency and
minimal latency jitter,

(ii) Support for fault-tolerance to handle replicated nodes and replicated
communication channels,

(iii) Clock synchronization in the range of microseconds, and

(iv) Membership service with low latency for detecting node failures.

A dependable real-time network must have replicated communication channels. The
system must be designed so that a failure in any single unit of the system cannot
cause a crash of the total system (single point of failure). Special care must be taken
to contain the effects of a node with a babbling idiot failure that can disrupt the
communication between the other correct nodes on the bus. To avoid a central point
of control failure, the real-time network should be based on distributed control.

Periodic state messages with implicit flow control are predominantly exchanged on
the real-time network.

Backbone Network: The purpose of the backbone network is the exchange of non
time-critical information between the real-time cluster and the data-processing

CHAPTER 7 REAL-TIME COMMUNICATION 157

systems of an organization. Examples of such information are production schedules,
data collected regarding product quality and production times, and standardized
production reports.

Table 7.2 compares the service characteristics of the three tvnes of networks.

Table 7.2: Comparison of field bus, real-time network, and backbone network.

The comparison of the characteristics of the OSI architecture versus the characteristics
of a real-time communication architecture suggests that the OSI architecture is
suitable for the implementation of the non time-critical backbone network, but is not
adequate for the time-critical real-time network and the field bus.

7.4 FUNDAMENTAL CONFLICTS IN PROTOCOL DESIGN

A balanced protocol design tries to reconcile many particular requirements. It is
important to understand which requirements are compatible with each other, and
which requirements are in fundamental conflict with each other, and cannot be
reconciled by any design decisions that are made. This section elaborates on some
fundamental conflicts in the design of a real-time protocol that controls the access to
a single communication channel, such as a bus.

7.4.1 External Control versus Composability

Consider a distributed real-time system consisting of a set of nodes that communicate
with each other. Each node has a host computer with a communication network
interface (CNI) that connects the host to this communication network.
Composability in the temporal domain requires that:

(i)

(ii)

The CNI of every node is fully specified in the temporal domain,

The integration of a set of nodes into the complete system does not lead to any
change of the temporal properties of the individual CNIs, and

158 CHAPTER 7 REAL-TIME COMMUNICATION

(iii) The temporal properties of every host can be tested in isolation with respect to
the CNI.

If the temporal properties are not contained in the CNI specification, e.g., because the
moment when a message must be transmitted is external and unknown to the
communication system, then it is not possible to achieve composability in the
temporal domain. If the temporal properties of the CNI are fully specified, then low-
level composability can be achieved. There is, however, always the possibility that
the application functions interact in an unpredictable manner that precludes high-level
composability.

Example: Consider the call forwarding option of a telephone answering machine. If
a number of these machines are connected in a cycle, then a call will be forwarded
indefinitely, a situation that cannot be detected at the low-level communication
interface.

In an event-triggered system, the temporal control signals originate external to the
communication system, in the hosts of the nodes (Section 2.1). It is thus not
possible to achieve low-level temporal composability.

Example: If all the nodes can compete at any point in time for a single
communication channel on a demand basis, then, it is impossible to avoid the side
effects caused by the extra transmission delay resulting from conflicts regarding the
access to this single channel, no matter how clever the medium access protocol may
be. These extra transmission delays can invalidate the temporal accuracy of the real-
time images that are transported in the message (see Section 2.2).

7.4.2 Flexibility versus Error Detection

Another fundamental conflict exists between the requirement for flexibility and the
requirement for error detection. Flexibility implies that the behavior of a node is not
restricted a priori. In an architecture without replication, error detection is only
possible if the actual behavior of a node can be compared to some a priori knowledge
of the expected behavior. If such knowledge is not available, it is not possible to
protect the network from a faulty node.

Example: Consider an event-triggered system with no regularity assumptions,
where access to a single bus is determined solely by the message priority: if there is
no restriction on the rate at which a node may send messages, it is impossible to
avoid the monopolization of the network by a single (possibly erroneous) node that
sends a continuous sequence of messages of the highest priority.

Example: If a node is not required to send a "heartbeat message" at regular intervals,
it is not possible to detect a node failure with a bounded latency.

7.4.3

A real-time protocol can be effective in either the transmission of periodic data or the
transmission of sporadic data, but not with both. The transmission of periodic data

Sporadic Data versus Periodic Data

CHAPTER 7 REAL-TIME COMMUNICATION 159

(e.g., data exchanges needed to coordinate a set of control loops) must take place with
minimal latency jitter. Because the repetitive intervals between the transmissions of
periodic data are known a priori, conflict-free schedules can be calculated off-line.
Sporadic data must be transmitted with minimal delay, on demand, at a priori

unknown points in time. If an external event requiring the transmission of a sporadic
message occurs at the same time as the next point of transmission of the periodic
data, then, the protocol must decide to either delay the sporadic data, or to modify the
schedules of the periodic data. In either case, the latency jitter increases. It is easy to
see that one cannot satisfy both goals simultaneously.

7.4.4 Single Locus of Control versus Fault Tolerance

Any protocol that relies on a single locus of control has a single point of failure.
This is evident for a communication protocol that relies on a central master.
However, even the access method of token passing relies on a single locus of control
at any particular moment, with no consideration of time as the control element. If the
station holding the token fails, no further communication is possible until the token
loss has been detected by an additional time-out mechanism, and the token has been
recovered. This takes time, and also interrupts the real-time communication. In some
respects, the nontrivial problem of token recovery is related to the problem of
switching from a central master to a standby master in a multi-master protocol.

7.4.5 Probabilistic Access versus Replica Determinism

Another fundamental conflict exists between the property of replica determinism
(needed if active redundancy is to be implemented) and that of medium access based
on probabilistic mechanisms. In systems that rely on a single winner emerging from
fine-grained race conditions (e.g., bit arbitration, conflict resolution based on random
numbers), it cannot be guaranteed that the access to replicated communication
channels is always resolved identically by competing nodes. Without replica
determinism, each replica can come to a different correct result, thereby leading to
inconsistency in the system as a whole.

7.5 MEDIA-ACCESS PROTOCOLS

The medium access strategy of a communication protocol specifies which node is
allowed to access the single communication channel at a particular point in time,
thereby determining many properties of the architecture of a distributed real-time
system. In this section, the medium-access strategies of a number of protocols that
are proposed for real-time applications, are surveyed. The focus is on event-triggered
protocols, since the time-triggered protocols are treated in Chapter 8.

7.5.1 Characteristics of a Communication Channel

A communication channel is characterized by its bandwidth and its propagation delay.

160 CHAPTER 7 REAL-TIME COMMUNICATION

Bandwidth: The bandwidth indicates the number of bits that can traverse a channel
in unit time. The bandwidth is determined by the physical characteristics of the
channel. For example, in a harsh environment, such as a car, it is not possible to
transmit more than 10 kbit/sec over a single-wire channel or 1 Mbit/sec over an
unshielded twisted pair because of EMI constraints. In contrast, optical channels can
transport gigabits of data per second.

Propagation Delay: The propagation delay is the time interval it takes for a bit to
travel from one end of the channel to the other end. It is determined by the length of
the channel and the transmission speed of the wave (electromagnetic, optical) within
the channel. The transmission speed of an electromagnetic wave in vacuum is about
300 000 km/sec, or 1 foot/nsec. Because the transmission speed of a wave in a cable
is approximately 2/3 of the transmission speed of light in vacuum, it takes a signal
about 5 µ sec to travel across a cable of 1 km length.

The term bit length of a channel is used to denote the number of bits that can traverse
the channel within one propagation delay. For example, if the channel bandwidth is
100 Mbit and the channel is 200 m long, the bitlength of the channel is 100 bits,
since the propagation delay of this channel is 1 µ sec.

Limit to Protocol Efficiency: In a bus system, the data efficiency of any media
access protocol to a single channel is limited by the need to maintain a minimum
time interval of one propagation delay between two successive messages. Assume the
bit length of a channel to be bl bits and the message length to be m bits. Then an
upper bound for the data efficiency of any media access protocol in a bus system is
given by:

data efficiency < m/(m+bl)

Example: Consider a lkm bus with a bandwidth equal to 100 Mbits/sec. The
message length that is transmitted over this channel is 100 bits. It follows that the
bit length of the channel is 500 bits, and the limit to the data efficiency is
100/(500+100) = 16.6%.

7.5.2 CSMA/CD–LON

Carrier Sense Multiple Access/Collision Detection Protocols (CSMA/CD) are
distributed medium access protocols that do not require any central locus of control.
The Ethernet protocol is the classic example of a CSMA/CD protocol.

An example of a protocol from this class that is targeted for real-time systems in
building automation is the LON protocol from Echelon [LON90]. The LON
Medium-Access Layer is a distributed access-control protocol that relies on a random
number generator to reduce the probability of collisions at the start of transmission
and during retransmissions as a result of collisions. A node wishing to transmit
always accesses the channel after a random delay after the carrier of the previous
transmission has disappeared. The size of this randomizing window is a function of
the load on the channel and is designed to minimize the probability of a collision
under high load. This mechanism thus provides stochastic back-pressure flow control,

CHAPTER 7 REAL-TIME COMMUNICATION 161

7.5.3 CSMA/CA–CAN

Carrier Sense Multiple Access Collision Avoidance Protocols (CSMA/CA) are
distributed medium-access protocols that avoid the occurrence of collisions, e.g., by
bit arbitration. The CAN (Control Area Network) Protocol developed by Bosch is a
good example of a CSMA/CA protocol that is targeted for automotive real-time
applications [CAN90]. Many European cars use the CAN protocol for in-vehicle data
communication.

A CAN message consists of six fields as seen in Figure 7.8. The first field is an 11-

bit arbitration field that also acts as a message identifier. Then there is a 6 bit control
field followed by a data field of between 0-64 bits in length. The data in the first three
fields are protected by a 16 bit CRC field that ensures a Hamming distance of 6. The
fields after the CRC are used for an immediate acknowledgment message.

Figure 7.8: Data format of a CAN message.

In CAN, the arbitration logic assumes that a recessive and a dominant state on the
communication channel exist such that the dominant state can overwrite the recessive
state. This is possible if the propagation delay of the channel is smaller than the
length of a bitcell. Assume that a '0' is coded into the dominant state and a '1' is
coded into the recessive state. Whenever a node intends to send a message, it puts the
first bit of the message identifier on the channel. In case of a conflict the node with a
'0' in its first identifier bit wins, and the one with a '1' must back off. This
arbitration continues for all bits of the identifier. A node with all '0's always wins–
this is the bit pattern of the highest priority message. In CAN, the message priority
is determined by the message identifier.

7.5.4 Token Bus–Profibus

In a token-bus system, the right to transmit is contained in a special control
message, the token. Whoever has the token is allowed to transmit. Two time
parameters determine the response of a token-bus system, the token-hold time THT,
denoting the longest time a node may hold the token, and the token-rotation time
TRT, denoting the longest time for a full rotation of the token. A serious error in
any token system is the loss of the token, e.g., if the station that possesses the token
fails. In such a situation, the network traffic is disrupted until some other node
detects the 'silence' by monitoring a time-out, and generates a new token.

An example of a token bus protocol proposed for real-time systems is the Profibus
[Pro92] that is used in German industry for process automation.

162 CHAPTER 7 REAL-TIME COMMUNICATION

7.5.5 Minislotting-ARINC 629

Minislotting is a time-controlled medium access strategy, where the time is
partitioned into a sequence of minislots, each longer than the length of the
propagation delay of the channel. Every node is assigned a unique number of
minislots that must elapse, with silence on the channel, before it is allowed to
transmit. A good example of a protocol based on minislotting is the ARINC 629
used by the aircraft industry for real-time communication [ARI91]. The ARINC 629
protocol is used on the Boeing 777 airplane.

ARINC 629 is a "waiting-room protocol" similar to the bakery algorithm of
Lamport [Lam74]. In the first phase, the set of processes that wants to transmit a
message is admitted to a "distributed waiting room". In the following time interval,
called an epoch, all processes that are in the waiting room are allowed to transmit
their messages before any new process is allowed to enter the waiting room.

In ARINC 629, the medium access is controlled by three time-out parameters, the
synchronization gap SG controlling the entrance to the waiting room, the terminal
gap TG controlling the access to the bus, and the transmit interval TI disabling a
host from monopolizing the channel. SG and TI are identical for all nodes, whereas
TG is the 'personality' timer that is different for each node. The following relations
hold between these time-outs: SG > Max{TGi} for all processes i, and TI > SG.

The detailed operation of the protocol is explained by looking at two processes P1
and P2 that want to transmit a message. Assume that TG1 of process P1 is shorter
than TG2 of process P2. Both processes initially wait for an interval of silence on
the channel that is longer than SG, the admit time-out for the waiting room. After
they have entered the waiting room, both processes wait for another period of silence
corresponding to their individual terminal gaps. Because all TGs are different, the
process with the shorter TG, P1 with TG1, starts transmitting if the bus is idle at the
moment when its time-out has elapsed (see Figure 7.9). At the start of transmission,
P1 sets its time-out TI to block any further sending activity in this epoch by node
P1. This protocol mechanism makes it impossible for a single host to monopolize
the network.

Figure 7.9: Timing diagram of ARINC 629.

As soon as P1 has started transmitting, P2 backs off until P1 has finished. After P1
has finished, P2 waits for TG2 again and starts to send its message if no bus activity
is recognized at the point of time-out, as shown in Figure 7.9. All nodes that must

CHAPTER 7 REAL-TIME COMMUNICATION 163

send a message in this epoch complete their sending activity before any other node
may start a new epoch, because SG > Max{TGi}.

Typical values for the time-out parameters on a 2 Mbit/sec channel are: terminal gap
(determined by the propagation delay): 4-128 µ sec, synchronization gap: longer than
the longest terminal gap, transmit interval: 0.5-64 msec. The time-out parameters in
the ARINC 629 protocol convey regularity information to the protocol machine that
restricts the operation of the host computer of a node. If the protocol operates
correctly, a malicious node cannot monopolize the network.

7.5.6 Central Master–FIP

A central master protocol relies on a central master to control the access to the bus.
In a case where the central master node fails, another node takes over the role of the
central master (multi-master systems). A good example of a central master protocol
is the FIP protocol [FIP94].

When a FIP system is configured, a static list containing the names and periods of
the messages is generated for the central master (called the bus arbitrator in FIP). The
master periodically broadcasts the name of a variable from this list on the bus. The
node that produces this variable responds with a broadcast of the contents of this
variable. All other nodes listen to this broadcast and accept the contents of this
variable if needed. The proper operation of all stations attached to the bus is
monitored by timers. If free time remains, the nodes can also send sporadic data after
being polled by the master.

7.5.7 TDMA–TTP

Time Division Multiple Access (TDMA) is a distributed static medium access
strategy where the right to transmit a frame is controlled by the progression of real
time. This requires that a (fault-tolerant) global time-base is available at all nodes. In
a TDMA-based system, the total channel capacity is statically divided into a number
of slots. A unique sending slot is assigned to every node. The sequence of sending
slots within an ensemble of nodes is called a TDMA round. A node can thus send one
frame in every TDMA round. If there are no data to send, an empty frame is
transmitted. After the completion of a TDMA round a new TDMA round, possibly
with different messages, is started. The sequence of all different TDMA rounds is
called a cluster cycle. The length of the cluster cycle determines the periodicity of the
TDMA system.

An example of a TDMA protocol designed for real-time applications is the Time-
Triggered Protocol (TTP) [Kop93a] described in Chapter 8.

7.5.8 Comparison of the Protocols

The characteristics of the protocols that have been surveyed in the previous section
are plotted in Figure 7.10. It should be noted, however, that the classification of the

164 CHAPTER 7 REAL-TIME COMMUNICATION

design decisions is subjective. Looking at Figure 7.10 it is evident that the protocols
CAN and LON on one side, and FIP and TTP on the other side, are positioned in
diagonally opposite comers of the design space. The ARINC 629 and the PROFIBUS
are at an intermediate position.

Figure 7.10: Design decisions in the protocols
CAN, LON, ARINC 629, Profibus, and TTP.

There is not, and there will never be, a real-time communication protocol that can
satisfy all requirements listed in section 7.1. Figure 7.11 tries to summarize the
tradeoffs that must be made in real-time protocol design. On the one side there is the
important characteristic of flexibility and immediate response, while on the side there
are the issues of comuosability and error detection.

Figure 7.11: Tradeoffs in protocol design.

It is up to the application designer to compare the characteristics of the application
requirements with those provided by the protocols to find the most agreeable match.

7.6 PERFORMANCE COMPARISON: ET VERSUS TT

The performance of an ET protocol is superior to that of a TT protocol if the
environment requires the exchange of many sporadic messages with unknown request
times. In an environment where many periodic messages must be exchanged, such as
in control applications, the performance of a TT protocol is better than that of an ET
protocol.

CHAPTER 7 REAL-TIME COMMUNICATION 165

The following example tries to give an indication of the efficiency of ET versus TT
systems in the transport of alarm messages. An alarm message is difficult to
schedule, because it occurs infrequently, but when it occurs it must be serviced
within a specified maximum latency.

7.6.1 Problem Specification

Consider a cluster consisting of ten interface nodes connected to the controlled object,
and one alarm monitoring node that processes the alarms and displays them to the
operator (Figure 7.12).

Figure 7.12: Example of an alarm monitoring system.

Each of the ten interface nodes must observe 40 binary alarm signals in the controlled
object. Within 100 msec after an alarm signal has changed to "TRUE", the operator
must be informed about the occurrence of the alarm.

The communication channel supports a bandwidth of 100 kbits/second.

7.6.2 ET and TT Solutions

We compare two solutions to this problem, both using the same basic protocol, e.g.,
a CAN protocol. The first implementation is event-triggered, while the second one is
time-triggered.

Event-Triggered Implementation: An event-triggered implementation sends an
event message to the operator as soon as an alarm has been recognized. The event
message contains the name of the alarm that can be encoded into a CAN message (see
Figure 7.7) with a data field of 1 byte. Considering that the overhead of a CAN
message is 44 bit, and that an intermessage gap of 4 bits is observed, the total length
of an event message that reports an alarm is 56 bits. If a bandwidth of 100

kbits/second is available, about 180 event messages can be transported in the given
latency interval of 100 msec. This is less than the 400 alarms that can occur
simultaneously in the peak load scenario.

Time-Triggered Implementation: A time-triggered implementation sends a
periodic state message every 100 msec by every node. This state message is a
periodic CAN message with a data field of 40 bits (5 bytes), one bit for each alarm.
Considering the overhead of 44 bits and the intermessage gap of 4 bits, the total state
message length is 88 bits. Considering the bandwidth of 100 kbits/second, about 110

166 CHAPTER 7 REAL-TIME COMMUNICATION

state messages can be transported in the given latency interval of 100 msec. Because
only 10 periodic state messages are needed to cover the specified peak-load scenario,
the TT implementation requires less than 10% of the available bandwidth to meet the
temporal requirements of the specification. The TT implementation provides an error
detection capability at the alarm monitor that is not available in the ET
implementation.

7.6.3 Comparison of the Solutions

Figure 7.13 compares the performance of the ET implementation versus the TT
implementation for different load scenarios. The break-even point between the two
implementations is at about 16 alarms per 100 milliseconds, i.e., about 4 % of the
peak load. If less than 16 alarms occur within a time interval of 100 msec, then the
ET implementation generates less load on the communication system. If more than
16 alarms occur, then the TT implementation is more efficient.

Figure 7.13: Load generated by the ET and TT solution
of the alarm monitoring system.

7.7 THE PHYSICAL LAYER

The physical layer specifies the transmission codes such as the coding of the bit
patterns on the physical channel, the transmission medium, the transmission speed,
and the physical shape of the bit cells. To some extent, the protocol design is
influenced by the decisions made at the physical layer and vice versa.

Example: The CAN protocol is based on the assumption that every bit cell
stabilizes on the channel such that the priority arbitration can be performed at all
nodes. This assumption limits the speed of the network to a bit cell size that is
longer than the propagation delay.

7.7.1 Properties of Transmission Codes

The terms asynchronous and synchronous have different meanings depending on
whether they are used in the computer-science community or in the data-

CHAPTER 7 REAL-TIME COMMUNICATION 167

communication community. The following section is referring to the meaning of
these words as used in the data-communication community.

In asynchronous communication, the receiver synchronizes its receiving logic with
that of the sender only at the beginning of a new message. Since the clocks of the
receiver and the sender drift apart during the interval of message reception, the
message length is limited in asynchronous communication, e.g., to about 10 bits in
a UART (Universal Asynchronous Receiver Transmitter) device that uses a low cost

resonator with a drift rate of 10-2 sec/sec.

In synchronous communication, the receiver resynchronizes its receive logic during

the reception of a message to the ticks of the sender's clock. This is only possible if
the selected data encoding guarantees frequent transitions in the bit stream. A code
that supports the resynchronization of the receiver's logic to the clocks of the sender
during the transmission is called a synchronizing code.

7.7.2 Examples of Transmission Codes

NRZ Code: A simple encoding technique is the NRZ (non-return-to-zero code)
where a "1" bit is high and a "0" bit is low (Figure 7.14). If the data stream contains
only "1"s or "0"s, this code does not generate any signal transitions on the
transmission channel. It is therefore a non-synchronizing code because it is
impossible for the receiver to retrieve the ticks of the clock of the sender from a
monotone transmission signal. An NRZ code can be used in an asynchronous
communication environment, but it cannot be used in a synchronous environment
without adding "artificial" transitions by inserting additional bits (bit stuffing) into
the transmission sequence to support the synchronization of the receiver. Bit stuffing
makes the length of a message data-dependent, which reduces the data efficiency.

Figure 7.14: Encoding of the bit sequence "1101 0001" in the NRZ code.

Manchester Code: A bitstream encoded by a Manchester code has a synchro-
nization edge in every bit cell of the transmitted signal. The Manchester code encodes
a "0" as a hig/low bitcell and a "1" as a low/high bitcell as shown in Figure 7.15.

Figure 7.15: Encoding of the bit sequence "1101 0001" in the Manchester Code.

This code is thus ideal from the point of view of resynchronization but it has the
disadvantage that the size of a feature element, i.e., the smallest geometric element in
the transmission sequence, is half a bit cell.

Modified Frequency Modulation (MFM): The MFM code is a code that has
a feature size of one bit cell and is also synchronizing [Mie91]. The encoding scheme

168 CHAPTER 7 REAL-TIME COMMUNICATION

requires to distinguish between a data point and a clock point. A "0" is encoded by no
signal change at a data point, a "1" requires a signal change at a data point. If there
are more than two "0"s in sequence, the encoding rules require a signal change at
clock points. as shown in Figure 7.16.

Figure 7.16: Encoding of the bit sequence "1101 0001" in MFM.

7.7.3 Signal Shape

The physical form of the feature element determines the electromagnetic emission
(electromagnetic interference, EMI) of a code. An example for the form of a feature
element is given in Figure 7.17. In this example, a bitcell is divided into three parts.
In the first part, the voltage is increased until it reaches the high level. This high
level is maintained during the second part. In the third part, the voltage is decreased
again.

Figure 7.17: Form of a feature element to reduce EMI.

Steep edges of electrical signals must be avoided because steep edges lead to high-
frequency Electromagnetic Interference (EMI). The smaller the feature element of a
code, the more difficult it becomes to use the code at high transmission rates.

POINTS TO REMEMBER

• Flow control is concerned with the control of the speed of the information flow
between a sender and a receiver in such a manner that the receiver can keep up
with the sender. In any communication scenario, it is the receiver, rather than
the sender, that determines the maximum speed of communication.

In explicit flow control, the receiver sends an explicit acknowledgment message
to the sender, informing the sender that the sender's previous message has
arrived correctly, and that the receiver is now ready to accept the next message.

Explicit flow control requires that the sender is in the sphere of control (SOC)
of the receiver, i.e., the receiver can exert back pressure on the sender.

In implicit flow control, the sender and receiver agree a priori, i.e., at system
start up, about the points in time when messages will be sent.

•

•

•

CHAPTER 7 REAL-TIME COMMUNICATION 169

• The communication system can exercise flow control over the requests from the
clients, and assist in fulfilling the temporal obligations of the client.

In a real-time system, the detection of message loss by the receiver of a
message is of particular concern.

The end-to-end acknowledgment indicating the success or failure of a
communication action does not have to come from the receiver of an output
message.

The multicast communication requirement suggests a communication structure
that supports multicasting at the physical level, e.g., a bus or a ring network.

The only successful technique to avoid thrashing in explicit flow-control
schemes is to monitor the resource requirements of the system continuously and
to exercise a stringent back-pressure flow control as soon as a decrease in the
throughput is observed.

It is difficult to design the interface between a producer subsystem that uses
implicit flow control, and a consumer subsystem that uses explicit flow
control.

The assumptions of the OSI reference architecture do not match up with the
requirements of hard real-time systems.

The Asynchronous Transfer Mode (ATM) communication technology provides
real-time communication with low jitter over broadband networks.

The purpose of the field bus is to interconnect a node of the distributed
computer system to the sensors and actuators in the controlled process. The
main concern at the field bus level is low cost, both for the controllers and for
the cabling.

The real-time network must provide reliable and temporally predictable message
transmission with small latency and minimal latency jitter, clock
synchronization, membership service, and support for fault-tolerance.

If the temporal properties are not contained in the CNI specification, e.g.,
because the point in time when a message must be transmitted is external and

unknown to the communication system, then it is not possible to achieve
composability in the temporal domain.

A fundamental conflict exists between the requirement for flexibility and the
requirement for error detection. Flexibility implies that the behavior of a node is
not restricted a priori. Error detection is only possible if the actual behavior of a
node can be compared with some a priori known expected behavior.

In a bus system, the data efficiency of any media access protocol is limited by
the need to maintain a minimum time interval of one propagation delay
between two successive messages.

•

•

•

•

•

•

•

•

•

•

•

•

BIBLIOGRAPHIC NOT E S

The requirements for distributed safety-critical real-time systems onboard vehicles are
analyzed in the SAE report J20056/1 "Class C Application Requirements" [SAE95].

170 CHAPTER 7 REAL-TIME COMMUNICATION

A good overview of the issues in real-time communication systems is contained in
the article on "Real-Time Communication" by Verissimo [Ver93], A communication
infrastructure for distributed real-time architecture is described in [Kop95e].

REVIEW QUESTIONS AND PROBLEMS

7.1 Compare the requirements of real-time communication systems with those of
non real-time communication systems. What are the most significant
differences?

What are the special requirements of a communication system for a safety
critical application? Why should the SRUs forming an FTU be physically
separated?

Why are end-to-end protocols needed at the interface between the computer
system and the controlled object?

Which subsystem controls the speed of communication if an explicit flow
control schema is deployed?

Calculate the latency jitter of a high level PAR protocol that allows three
retries, assuming that the lower level protocol used for this implementation
has a dmin of 2 msec and a dmax of 20 msec. Calculate the error detection
latency at the sender.

Compare the efficiency of event-triggered and time-triggered communication
protocols at low load and at peak load.

What mechanisms can lead to trashing? How should you react in an event-
triggered system if thrashing is observed?

What are the characteristic of OSI based protocols? How do they match with
the requirements of hard real-time systems?

How is the information organized in an ATM system? Discuss the suitability
of ATM systems for the implementation of wide-area real-time systems.

What are the main differences between a field bus, a real-time network, and a
backbone network?

Discuss the fundamental conflicts in the requirements imposed on a real-time
protocol.

Given a bandwidth of 500 Mbits/sec, a channel length of 100 m and a
message length of 80 bits, what is the limit of the protocol efficiency that can
be achieved at the media access level of a bus system?

How do the nodes in a CAN system decide which node is allowed to access
the bus?

Explain the role of the three time-outs in the ARINC 629 protocol. Is it
possible for a collision to occur on an ARINC 629 bus?

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.11

7.12

7.13

7.14

Chapter 8

The Time-Triggered Protocols

OVERVIEW

The Time-Triggered Protocols (TTP) form a new protocol class that has been
designed at the Technische Universität Wien to accommodate the specific
requirements of fault-tolerant distributed real-time systems. The chapter starts with a
statement of the protocol objectives, and explains the rationale that governed the
protocol design. There are two different variants of TTP, TTP/C for the
implementation of a fault-tolerant intra-cluster communication system, and the low-
cost TTP/A version for the implementation of a field bus.

Section 8.2 describes the layers of TTP. Apart from the physical and data link layer,
the TTP layers are different from those of the OSI model. The smallest replaceable
unit (SRU) layer provides the consistent SRU membership service. The redundancy
management layer is responsible for the startup and reconfiguration of a TTP system.
The fault-tolerant unit (FTU) layer groups nodes into FTUs, and provides an FTU
membership. The most important interface of a TTP system is the node-internal
communication-network interface (CNI) that acts as a temporal firewall between the
host computer and the communication network. The structure of the CNI is explained
in Section 8.3. Section 8.4 outlines the internal logic of TTPK. The membership
service of TTP/C is explained, the novel method for CRC calculation that guarantees
the consistency between the protocol state of the sender and the receiver is presented,
and the message formats are depicted.

Section 8.5 is devoted to the time-triggered field bus protocol TTP/A. TTP/A is
intended for the interconnection of intelligent sensors and actuators to an interface
node. The implementation of this low-cost protocol requires only a standard UART
channel and a local timer that can be found on almost all single chip
microcontrollers.

172 CHAPTER 8 THE TIME-TRIGGERED PROTOCOLS

8.1 INTRODUCTION TO TIME-TRIGGERED PROTOCOLS

The Time-Triggered Protocols (TTP) are designed for the implementing of a time-
triggered hard real-time system. There are two versions of the Time-Triggered
Protocol, TTP/C [Kop93a] for fault-tolerant hard real-time systems and TTP/A
[Kop95c] for low cost applications (e.g., fieldbus applications).

8.1.1 Protocol Objectives

The protocol objectives are in line with the goals established in Chapter 7:

(i) Message transport with low latency and minimal jitter,

(ii) Support of composability,

(iii) Provision of a fault-tolerant membership service,

(vi) Fault-tolerant clock synchronization,

(v) Distributed redundancy management,

(vi) Minimal overhead, both in message length and in the number of messages, and

(vii) Scalability to high data rates, and efficient operation on twisted wires as well as
on optical fibers.

TTP provides flexibility as long as the determinism, i.e., the analytical predictability
of the timeliness, can be maintained.

8.1.2

The structure of a TTP system is shown Figure 8.1. A cluster of fault-tolerant units
(FTUs), each one consisting of one, two, or more nodes, is interconnected by a

Structure of a TTP System

cnmmnniratinn network.

Figure 8.1: Communication-network interface (CNI) in a TTP system.

In TTP, a node is the smallest replaceable unit (SRU) that can be replaced or
reconfigured in case of failure. An node consists of two subsystems, the host and the
communication controller (Figure 8.2). The Communication-Network Interface (CNI)
is the node-internal interface between the communication controller and the host. The
CNI is formed by a dual-ported random-access memory (DPRAM), so that the

CHAPTER 8 THE TIME-TRIGGERED PROTOCOLS 173

communication controller as well as the host computer can read/write state messages
into the CNI. The integrity of the data passed between the host and the
communication controller is ensured by a special lock-free synchronization protocol,
the Non-Blocking Write (NBW) protocol. The NBW is described in the chapter on
operating systems (Section 10.2.2).

Figure 8.2: Hardware structure of a TTP node.

The communication controller within a node has a local memory to hold the message

descriptor list (MEDL) that determines at what point in time a node is allowed to
send a message, and when it can expect to receive a message from another node. The
MEDL has the size of one cluster cycle that is composed of a sequence of TDMA
rounds as described in Section 7.5.7. Additionally, a TTP controller contains
independent hardware devices, the Bus Guardians (BGs), that monitor the temporal
access pattern of the controller to the replicated buses, and terminate the controller
operation in case a timing violation in the regular access pattern is detected.

8.1.3 Design Rationale

TTP is a time-division-multiple-access (TDMA) protocol where every node sends a
message on the shared communication channel during a predetermined statically
assigned time slot. The regularity of the TDMA system is used to optimize the TTP
protocol.

Composabil i ty: The operation of the TTP communication controller is
autonomous, and is controlled by the MEDL inside the controller and the fault-
tolerant global time. The CNI between the TTP controller and the host computer is
fully specified in the value and temporal domain, thus supporting the composability
of an architecture (see Section 2.2). An error (software or hardware) in any one of the
hosts cannot interfere with the proper operation of the communication system
because no control signal crosses the CNI (impossibility of control error
propagation), and the MEDLs are inaccessible to the hosts.

174 CHAPTER 8 THE TIME-TRIGGERED PROTOCOLS

Best Use of A Priori Knowledge: In a time-triggered architecture, the
information about the behavior of the system, e.g., which node must send what
message at a particular point in time of a sparse time-base, is known at design time
to all nodes of the ensemble. TTP tries to make best use of this a priori information.

Example: A receiver can detect a missing message immediately after the a priori

known receive time has elapsed.

Naming: The message and sender name need not be part of a message because they
can be retrieved from the MEDL using the point in time of message transmission as
an index. The data element names that are used in the host software to identify a
given RT entity can differ in different hosts.

Acknowledgment Scheme: The acknowledgment scheme of TTP takes advantage
of the broadcast facility of the communication medium. It is known a priori that
every correct member of the ensemble hears every message transmitted by a correct
sender. As soon as one receiver has acknowledged a message from a sender, it can be
concluded that the message has been sent correctly and that all correct receivers have
received it. To make the acknowledgment scheme fault-tolerant, redundancy is
introduced. This line of reasoning is valid as long as the probability of successive
asymmetric communication failures is negligible.

Fail Silence in the Temporal Domain: TTP is based on the assumption that
the nodes support the fail-silent abstraction in the temporal domain, i.e., a node
either delivers a message at the correct moment or not at all. This helps to enforce
error confinement at the system level. The fail-silent behavior of an node in the time
domain is realized by the independent bus guardian at each channel. A membership
service is provided to detect the failure of a node consistently with a small latency.

Fail Silence in the Value Domain: The TTP controller provides fail silence
in the temporal domain. Designing fail silence in the value domain is in the
responsibility of the host. The host software must ensure by space and/or time
redundancy (see Section 14.1.1) that all the internal failures of a host are detected
before a non-detectable erroneous output message is transmitted. Value failures
introduced at the communication level are detected by the CRC mechanism provided
by TTP.

Design Tradeoffs: In TTP, the design tradeoff between processing requirements at
the nodes and bandwidth requirements of the channel is tilted towards optimal usage
of the available channel bandwidth, even at the expense of increased processing load
at the communication controllers. Considering the advances of the VLSI technology,
we feel that the inherent bandwidth limitations of the channels in the envisioned
application domain of automotive electronics are much more severe than the
limitations in the processing and storage capabilities of the communication
controllers [Kop94].

CHAPTER 8 THE TIME-TRIGGERED PROTOCOLS 175

8.1.4 Protocol Variants

Two variants of the Time-Triggered Protocol are available, the full version TTP/C
and the scaled-down version TTP/A. The communication-network interface has a
compatible structure for both protocol versions.

TTP/C: The TTP/C protocol is the full version of the protocol that provides all
services needed for the implementation of a fault-tolerant distributed real-time system.
TTP/C supports FTUs that comprise replicated communication channels and different
replication strategies, e.g., replicated fail-silent nodes or TMR nodes (see Section
6.4.2). TTP/C requires a specially designed communication controller that contains
hardware mechanisms for the implementation of the protocol functions.

TTP/A: The TTP/A protocol is a scaled-down version that is intended for non fault-
tolerant field bus applications. TTP/A requires only a standard UART hardware port
and a local real-time clock, both of which are available on most low-cost
microcontrollers. The protocol logic can be implemented in the software of a
microcontroller.

Table 8.1 compares the services provided by TTP/A and TTP/C.

Table 8.1: Services of TTP/A and TTP/C.

8.2 OVERVIEW OF THE TTP/C PROTOCOL LAYERS

The protocol mechanisms are organized into a set of conceptual layers, as shown in
Figure 8.3. The interface between the redundancy management layer and the FTU
layer is called the Basic Communication-Network Interface (CNI). The interface
between the FTU Layer and the Host Layer is called the FTU Communication-

Network Interface.

176 CHAPTER 8 THE TIME-TRIGGERED PROTOCOLS

Figure 8.3: Conceptual layers of TTP/C.

8.2.1 Data Link/Physical Layer

The data-link/physical layer provides the means to exchange frames between the
nodes. The data-link/physical layer must provide media-access control, bit
synchronization and bit encodingldecoding. The access scheme to the channel is time-
division-multiple access (TDMA), and is controlled by the data stored in the message
descriptor list (MEDL) of the TTP controller. Bit synchronization and bit
encoding/decoding uses the Modified Frequency Modulation (MFM) code. On a
twisted-wire pair, the physical layer can be that of a CAN network, because the
requirements on the physical layer of a TTP system are less demanding than those of
a CAN system (TTP does not require bit arbitration).

8.2.2 SRU Layer

The SRU layer stores the data fields of the received frames into the memory area of
the CNI DPRAM according to the control data contained in the MEDL. The SRU
layer establishes the node membership. An implicit acknowledgment scheme uses the
node membership to acknowledge the messages. Byzantine-resilient clock
synchronization by the fault-tolerant average algorithm (see Section 3.4.3) is
performed at the SRU layer. The SRU layer provides an immediate and deferred mode
change service to the higher layers. An immediate mode change is executed
immediately after a permitted mode change request. The execution of the deferred
mode-change service is delayed until the beginning of the next cluster cycle.

CHAPTER 8 THE TIME-TRIGGERED PROTOCOLS 177

8.2.3

The redundancy management layer (RM Layer) provides the mechanisms for the cold
start of a TTP/C cluster. The RM layer uses the mode-change service that is part of
the SRU layer during startup. The reintegration of a repaired node is also performed
in the RM layer. A further function of the RM layer is the dynamic redundancy
management, i.e., the replacement of a failed node by a shadow node. For this
purpose a node reconfiguration field is provided in the CNI. If the host decides to
reconfigure to a new node role, then the name of the requested node role is written
into this reconfiguration field. The TTP controller checks whether the requested new
node role is permitted. If so, it performs a node role change to the new node role, and
reinitializes the bus guardian to protect the bus access in the new role.

Example: Consider the TMR configuration of Fig. 8.4. Assume that a shadow node
is provided to replace any one of the three active nodes in case an active node fails. If
the FTU layer of the shadow node detects the failure of an active node, the FTU layer
requests a reconfiguration to the role of the failed node and takes its empty TDMA
slot. After the reconfiguration, the TMR triad again contains three active nodes.

Redundancy Management Layer (RM Layer)

Figure 8.4 Different FTU configurations in TTP/C.

8.2.4 FTU Layer

The FTU layer groups two or more nodes into FTUs. The FTU layer must ensure
that data are only visible in the FTU CNI after they have become permanent. (see
Section 5.5.1). Depending on the chosen strategy, differing FTU configurations
(Figure 8.4) can be supported by different FTU layers.

Some examples of different FTU layers are:

(i) Two fail-silent nodes can be grouped into an FTU that provides the specified
service as long as one of the two fail-silent nodes is operating. Fail silence in
the value domain has to be ensured by the host. To improve the error-detection
coverage in the value domain, the FTU layer supports the High-Error-Detection-

Coverage (HEDC) mode (see Section 14.1.2).

Three nodes can be grouped into a TMR (Triple Modular Redundancy) FTU. A
TMR FTU can tolerate a single value failure in any of its nodes. The

(ii)

178 CHAPTER 8 THE TIME-TRIGGERED PROTOCOLS

synchronization of the three nodes of a TMR FTU is realized by the lower
layers.

(iii) It is possible to form FTUs of software subsystems executing on different
nodes.

Each of these different FTU layers has a different FTU membership service, and a
different structure of the FTU CNI. The FTU membership service is provided by the
FTU layer. The FTU layer can be implemented in the host computer or in the TTP/C
controller.

A basic TTP/C controller, which is implemented in hardware, does not contain an
FTU layer but provides the basic CNI interface to the software in the host computer.
It is, in this case up to the software of the host computer to implement the FTU
layer.

8.3 THE BASIC CNI

The CNI is the most important interface within a time-triggered architecture, because
it is the only interface of the communication system that is visible to the software of
the host computer. It thus constitutes the programming interface of a TTP network.
Every effort has been made to make the CNI simple to understand and easy to
program. The CNIs for the TTP/A protocol and for the TTP/C protocol are upward
compatible.

Figure 8.5: Status and control registers at the CNI.

8.3.1 Structure of the CNI

The basic CNI is a data-sharing interface between the RM layer and the FTU layer.
The design of the CNI as a data sharing interface is reflected by its structure–it
consists primarily of data fields.

(i) The Status/Control Area contains system information. It provides a facility for
the TTP controller and the host CPU to communicate with each other via
dedicated data fields.

(ii) The Message Area contains the messages sent or received by the node, and
includes a control byte for each message.

There is a single control line from the TTP controller to the host that signals the tick
of the global clock.

CHAPTER 8 THE TIME-TRIGGERED PROTOCOLS 179

8.3.2 Status/Control Area

The status/control area of the CNI is a memory area of the DPRAM containing the
control and status information that is shared between the TTP controller and the host
CPU. The memory layout of the registers of the status/control is shown in Figure
8.5.

Status Registers Updated by the TTP Controller: The two-byte global
internal time register contains the current global time of the cluster, established by
the mutual internal synchronization of the TTP controllers.

The next three status fields contain the current h-state of the protocol, the controller

state (C-state). The C-state consists of the SRU time, the MEDL position, and the
node membership vector. The SRU time contains the current global time in SRU
slot granularity. This time stays constant during a complete SRU slot and is
increased at the beginning of the next SRU slot. The MEDL position denotes the
current operating mode of the cluster and the current position in the message
descriptor list MEDL. The node membership field contains the current node
membership vector. The node membership vector comprises as many bits as there are
nodes in a cluster. Each node is assigned to a specified bit position of the
membership vector. When this bit is set to "TRUE" the node was operating during
its last sending slot, if this bit is set to "FALSE", this node was not operating. The
membership is adjusted at the end of each SRU slot after all messages from the
sending node must have arrived and the cyclic-redundancy check (CRC) fields of the
messages have been analyzed. The protocol does only operate correctly if all members
of the ensemble have the same C-state. This is why C-state agreement between
sender and receiver is continually enforced by the protocol (see also Section 8.4.2).

The final field of the status area contains diverse status information and diagnosis
information regarding the operation of the protocol that can be evaluated by the host.

Control Registers Written by the Host: The first control register, the
watchdog field, must be updated periodically by the host CPU. The controller checks
this field periodically to determine if the host CPU is alive. If the host CPU fails to
update the watchdog field within the specified interval, then the controller assumes a
failure of the host and stops sending messages on the network.

The time-out register provides the host with the possibility of requesting a temporal
control signal (a time interrupt) at a specific future point of the global time. This
register can be used to synchronize an activity of the host with the global time in the
cluster. The host CPU writes a future time point into this register. When the value
of the global time reaches this value, the TTP controller raises the interrupt.

The mode-change register can be used to request a mode change to a new schedule in
all nodes of a cluster (see also Section 11.4.2). This mode-change request is
transmitted to all other nodes at the next predetermined sending point of this node.
TTP distinguishes between two types of mode changes, an immediate mode change
and a deferred mode change. As the name implies, an immediate mode change is
executed immediately by all nodes. A deferred mode change is delayed until the start

180 CHAPTER 8 THE TIME-TRIGGERED PROTOCOLS

of the next cluster cycle. A mode change is a very powerful–and therefore dangerous–
mechanism that brings data dependency into the temporal control structure. In safety
critical systems mode changes should be used with great care. The controller internal
data structure MEDL of the communication controller in each node contains a static
lock that can be turned on before system start up so that a given set of (or all) mode
changes originating from the host of the node is disabled.

The reconfiguration-request register is used by the host to request a role change of the
node. If a host detects that an important node has failed then the host can request a
role change to perform the function of the failed node. This mechanism is provided to
avoid spare exhaustion in a fault-tolerant system that has to operate over long
mission times. To avoid erroneous role changes, the role-change mechanism is
protected by special permission fields in the MEDL.

The external rate-correction field is provided for external clock synchronization. A
time gateway can request a bounded common-mode drift of all nodes in a cluster to
achieve synchronism with an external time source, such as a GPS time receiver (see
Section 3.5).

8.3.3 Message Area

The application specific structure of the Message Area is determined by the MEDL of
the TTP controller. Besides the data contained in the messages, a message entry also
carries a status bvte (Figure 8.6) that informs of potential error conditions.

Figure 8.6: Entry in the message area of the CNI.

8.3.4 Consistent Data Transfer

The consistency of single-word data transfers across the CNI is guaranteed by the
hardware arbitration of the DPRAM. The consistency of a multi-word data transfer is
realized at the CNI as follows:

Controller to Host: The data transfer from the TTP controller to the host CPU
is under the control of the current MEDL. It consists of copying one message from
the receive buffer of the TTP controller into the message area of the CNI at an a

priori known time. Along with the message data, the status byte containing status
information about the message reception must be set by the TTP controller. The
status byte and the data field of a message are written to the CNI before the end of
each SRU slot.

If the host CPU derives its read-access intervals from the global time base, then,
access conflicts between the controller and the host can be avoided by making use of
this a priori information. If the host CPU accesses the CNI at arbitrary points in
time, the non-blocking write protocol NBW is provided to assure data integrity (see
Section 10.2.1). This non-blocking protocol enables the host CPU to detect any
write operation of the TTP controller that occurs while a message is read by the host.

CHAPTER 8 THE TIME-TRIGGERED PROTOCOLS 181

In this case, the read operation of the host must be repeated. The TTP controller is
never delayed while accessing the CNI.

Host to Controller: The host is aware of the current time and knows a priori

when the TTP controller reads from the CNI. The host operating system must
synchronize its output action such that it does not write into the CNI when the TTP
controller performs a read operation. The NBW protocol provides an error-detection
mechanism for data transfer from the host to the TTP controller.

8.4 INTERNAL OPERATION OF TTP/C

8.4.1 The Message Descriptor List (MEDL)

The MEDL is the static data structure within each TTP controller that controls when
a message must be sent on or received from the communication channels and
contains the position of the data in the CNI (Figure 8.7). During protocol operation,
the MEDL serves as a dispatching table for the TTP controller. The length of MEDL
is determined by the length of the cluster cycle, i.e., the sequence of TDMA rounds
after which the operation of the cluster repeats itself.

Figure 8.7: Format of the MEDL.

MEDL Entry: An entry in the MEDL comprises three fields: a time field, an
address field, and an attribute field (Figure 8.7). The time field contains the point in
global time (with SRU granularity) when the message specified in the address field
must be communicated. The address field points to the CNI memory cells where the
data items must be stored to or retrieved from. The attribute field comprises four
subfields:

(i) a direction subfield (D) that specifies if the message is an input message or an
output message,

(ii) a length subfield (L), denoting the length of the message that must be
communicated,

(iii) an initialization subfield (I) that specifies whether the message is an
initialization message or a normal message, and

(iv) an additional parameter subfield (A) that contains additional protective
information concerning mode changes and node role changes.

The host can only execute mode changes that are permitted by the attribute field of
the MEDL. In a safety-critical system, all mode changes requested by a host can be
blocked by the MEDL.

182 CHAPTER 8 THE TIME-TRIGGERED PROTOCOLS

The physical layout of the MEDL depends on the particular TTP controller
implementation. Every node must have its personal MEDL–only one node can send a
message on a channel at a particular time–and the set of all MEDLs of a cluster must
be consistent. The MEDLs are generated automatically by a software development
tool, the cluster compiler [Kop95a]. The cluster compiler takes as input a generic
application description of a cluster, stored in a data base. This application description
contains all attributes of the messages and modes of the cluster. The output of the
cluster compiler is a set of MEDLs, one for each TTP controller, in a format
prescribed by the particular TTP controller implementation.

Name Mapping: TTP provides a flexible naming scheme so that the same data
element can be named differently in communicating hosts. Of course, it is possible
and advisable to use the same name for the same RT entity in all nodes of a cluster,
but the name-space design does not require such a uniform name structure. Flexible
naming is of great advantage if legacy software is integrated into a cluster. The
system integrator just knows about the function of the software, the meaning and
address of the input and output data at the CNI, but may not have any idea about the
internal structure or naming within the legacy code.

Name mapping is performed under the control of the MEDL in each controller. A
TTP message does not carry a name on the physical channel. The first level of name
mapping of the point in time of message tansmission to the appropriate memory
position in the CNI is under control of the local MEDL of each node (Figure 8.8).
The a priori known point in time of sending and receiving is sufficient to uniquely
identify each message at the end points of the communication. Because real-time
messages are normally very short–only a few bytes of data–the elimination of the
name field reduces the message size and increases the data efficiency of the protocol
significantly.

Figure 8.8: Naming in TTP.

A second level of name translation is possible between the CNI memory location and
the name used in the software of the host.

Example: Consider an elevator system in a multi-story building where every floor
has its local floor-controller node to control the door of the elevator and the displays

CHAPTER 8 THE TIME-TRIGGERED PROTOCOLS 183

at the door. Since the name mapping between the global network data and the local
node data is performed under the control of the MEDL in the communication
controller, the host software in each one of the floor-controller nodes can be identical.

8.4 .2 Frame Format

During normal operation, a node transmits two frames during an SRU slot, one on
each one of the replicated channels. A TTP/C frameconsists of three fields (Figure
8.9), a four-bit header, the variable-length data field of up to sixteen bytes, and a two
(or a three) byte CRC field.

Figure 8.9: TTP frame format.

First Bit of the Header: The first bit of the header informs whether the message
is an initialization (I) message or a normal (N) message. I-messages are used to
initialize the system, They carry the C-state of the sender in the data field and make it
possible for a new node to get the current C-state of the protocol when joining the
ensemble.

Mode Bits: The three mode bits can be used to request a mode change in all nodes
of the cluster. One out of seven application-specific successor modes to any given
mode can be selected. The mode change mechanism can be restricted or disabled by
setting parameters in the MEDL.

Data Field: The data field contains up to sixteen data bytes from the CNI at the
sending node.

CRC Field: The CRC field contains the CRC check bits for communication error
detection, as explained above.

8.4.3 CRC Calculation

The CRC of an I-message is calculated over the concatenation of the header and the
data bytes.

N-messages are used during normal system operation, and carry the host data in the
data field. To enforce agreement of the controller states (C-state–see Figure 8.3)
among the ensemble without having to include the C-state in each message, TTP
uses an innovative technique of CRC calculation for N-Messages (Figure 8.10). The
CRC at the sender is calculated over the message contents concatenated with the
sender's C-state. The CRC check at the receiver is calculated over the received
message contents concatenated with the receiver's C-state. If the result of the CRC
check at the receiver is negative, then, either the message has been corrupted during

184 CHAPTER 8 THE TIME-TRIGGERED PROTOCOLS

transmission or there is a disagreement between the C-states of the sender and
receiver. In both cases, the message must be discarded.

CRC Calculation at Sender:

Figure 8.10: Calculation of the CRC of normal messages.

8.4.4 The Membership Service

The SRU layer of TTP provides a timely node membership service. The number of
bits in the membership field of the C-state (Figure 8.9) corresponds to the maximum
number of nodes in a cluster. Every node-send slot is a membership point for the
sending node. If one out of the redundant messages of the sending node is correctly
received by a receiving node, the receiving node considers the sending node
operational at this membership point. The node is considered operational until its
following membership point in the next TDMA cycle (see Section 6.4.4). If a node
fails within this interval, the failure is only be recognized at the coming membership
point. The delay of the membership information is at most one TDMA cycle.
Therefore, the join protocol must wait until at least one TDMA cycle after a failure.
If none of the expected messages arrives with a correct CRC, then, a receiver
considers the sending node as failed at this membership point and clears the
membership bit of this node at the end of the current SRU slot.

If a particular node did not receive any correct message from a sending node–e.g.,
because the incoming link of the receiver has failed–it assumes that this sending node
has crashed, and it eliminates the sending node from its membership vector at the end
of the SRU slot. If, however, all other nodes received at least one of these messages
they come to a different conclusion about the membership. From this moment
onward, two cliques have formed that cannot communicate with each other because
they contain a different C-state. TTP contains a mechanism that makes sure that in
such a conflict situation the majority view wins, i.e., that the node with the failed
input port, which is in the minority, is eliminated from the membership. Before
sending a message, a node counts its negative CRC-check results during the last
TDMA round. If more than half of the messages received have been discarded because
of a failed CRC check, the node assumes that its C-state differs from the majority,
terminates its operation and thus leaves the membership. This mechanism avoids

CHAPTER 8 THE TIME-TRIGGERED PROTOCOLS 185

clique formation among the nodes of the ensemble. Agreement on membership is
thus tantamount to an indirect acknowledgment of message reception by the
majority.

8.4.5 Clock Synchronization

TTP provides the fault-tolerant internal synchronization of the local clocks to
generate a global time-base of known precision. Because every receiving node knows
a priori the expected time of arrival of each message, the deviation between the a

priori specified arrival time and the observed arrival time is an indication of the clock
difference between the sender's clock and the receiver's clock.

It is not necessary to exchange explicit synchronization messages or to carry the
value of the send time in the message, thus extending the message length.
Continuous clock synchronization is performed without any overhead in message
length or message number by periodically applying a fault-tolerant clock
synchronization algorithm, e.g., the FTA algorithm (see Section 3.4.3), preferably
with hardware support [Kop87].

8.5 TTP/A FOR FIELD BUS APPLICATIONS

The TTP/A protocol is a scaled down version of the time-triggered protocol. TTP/A
is intended for low-cost field bus applications. It is a multi-master protocol, not a
distributed protocol. The node that interfaces a TTP/A fieldbus to a cluster is the
natural master of a TTP/A network (see Figure 7.7 of Chapter 7).

TTP/A can be implemented on standard UARTs (Universal Asynchronous Receiver
Transmitter) that are available on most low-cost eight-bit microcontrollers. A
standard UART message consists of a start bit, 8 data bits (one-byte user data), a
parity bit, and a stop bit, i.e., 11 bits in total.

8.5 .1 Principles of Operation

TTP/A is based on one-byte state messages. Most of these messages are data
messages, while only one special message, the fireworks message, is a control
message. Every protocol event occurs either at a predefined point of time (e.g.,
sending a message) or must happen in a predefined time window (e.g., receipt of a
message).

Round: In TTP/A all communication activities are organized into rounds (Figure
8.11). A round is the transmission of a sequence of one-byte messages that is
specified a priori in the MEDL. A round starts with a special control byte, the
Fireworks byte, that is transmitted by the active master. The Fireworks byte serves
two purposes:

(i)

(ii)

It is the global synchronization event for the start of a new round, and

It contains the name of the active MEDL for this round.

186 CHAPTER 8 THE TIME-TRIGGERED PROTOCOLS

The Fireworks byte is followed by a sequence of data bytes from the individual nodes
as specified in the active MEDL. A round terminates when the end of the active
MEDL is reached. Every round is independent of the previous round.

To be able to differentiate between a Fireworks byte and a data byte, the Fireworks
byte has characteristic features in the value domain and in the time domain: the
Fireworks byte has an odd parity while all data bytes have even parity. The
intermessage gap between the Fireworks byte and the first data byte is significantly
longer than the intermessage gap between the succeeding data bytes. These
characteristic features make it possible for all nodes to recognize a new Fireworks
byte, even if some faults have disturbed the communication during the previous
round. The characteristic features of the Fireworks byte simplify the reintegration of
repaired nodes--a repaired node monitors the network until a correct Fireworks byte is
detected.

Because the sequence of messages is determined a priori by the definition of the active
MEDL, it is not necessary to carry the identifier of a message as part of the message.
All eight data bits of a message are true data bits. This improves the data efficiency
of the protocol, particularly for the short one byte messages that are typical for field
bus applications.

Figure 8.11: Structure of a TTP/A round.

Modes: From the point of view of protocol operation, every round is independent of
the previous round. In many applications, the termination of a round causes the
initiation of an identical next round by the active master. We call a sequence of
identical rounds controlled by the same MEDL a mode. With the start of every new
round a mode change can be initiated by the active master by transmitting the name
of the new MEDL in the Fireworks byte.

Time-outs: The progression of the protocol through the active MEDL is controlled
by a set of time-outs. The start of these time-outs is initially synchronized with the
reception of the Fireworks byte and can be resynchronized with the reception of every
new correct data message at every node. The "Receive Data Interrupt" (RDI) of the
UART controller is considered a global synchronization event. The time-out values
can be derived analytically from the parameters of the TTP/A controller [Kop95c].

To provide high error detection coverage, the occurrence of this global event RDI is
monitored at every node. In case a node fails or a message is lost, a local time-out
continues the protocol operation. In case the master does not send a new Fireworks

CHAPTER 8 THE TIME-TRIGGERED PROTOCOLS 187

byte within a specified time–the multi-master time-out–a backup node takes up the
role of the active master.

8.5.2

The Fireworks Protocol TTP/A takes advantage of all error detection mechanisms of
a UART controller to detect value errors, and provides a number of mechanisms to
detect errors in the time domain with a short error detection latency. Note that in
systems that support the fail silent abstraction, the error detection in the time domain
is the primary error detection mechanism.

Error Detection in the Time Domain: The temporal control scheme of
TTP/A is restrictive. After a new round has been initiated by the master, the temporal
sequence of all correct send and receive events is specified in detail in the active
MEDL and monitored by all nodes. If a "receive data interrupt" (RDI) is observed
outside the specified window, a control error has occurred and the corresponding error
flag is raised.

If an expected message is not received within the specified window, the old version of
the data is not modified and an error is reported to the host through the control byte.
The very short error detection latency of TTP/A makes it possible to initiate fail-safe
actions with minimal delay. A missing data message does not corrupt the control
scheme. If a control error is detected by a node–a message is received outside the
expected window–then the present round at this node is terminated immediately and
the node-local protocol is reinitialized to wait for a new Fireworks byte by the
master. If the master does not send such a Fireworks byte within a specified
multimaster time-out, then, a backup master takes control of the network.

Error Detection in the Value Domain: The error detection in the value
domain relies on the facilities of the particular UART controller and on data
redundancy provided and checked by the application software in the host. The TTP/A
protocol requires that the controller supports odd and even parity. The Fireworks byte
has odd parity, while all data bytes have even parity. Besides the parity check, many
UART controllers provide mechanisms to detect various other kinds of reception
errors, such as noise errors detected by oversampling, and framing errors. Whenever a
data error is detected by a receiver, the old version of the state variable is not
modified, and the data error is reported to the host through the status byte of the CNI.

8.5.3 Response Time of a TTP/A System

The time-out values of a TTP/A system depend on the bandwidth of the field bus, the
drift of the resonators in the nodes, the interrupt response time of the node OS, the
granularity of the clock of the node, and the time it takes for the host in the node to
process the protocol logic. If these parameters are known, the time-out values of a
TTP/A system can be calculated analytically [Kop95c].

Table 8.2 gives an example of an estimate of the TDMA round duration of a TTP/A
system consisting of ten nodes, each one transmitting one data byte of 8 bits in each

Error Detection and Error Handling

188 CHAPTER 8 THE TIME-TRIGGERED PROTOCOLS

round. The data efficiency is the relation between the user data (measured in number
of bits) transmitted during one round in relation to the total number of bitcells
transmitted on the channel.

Table 8.2: Data efficiency of TTP/A.

The installation of a field bus introduces an additional delay into the observations. If
the observation of an analog value by the field bus node is temporally coordinated
with the TTP/A schedule, then this additional delay is about 1.3 msec in the above
example, The observation of an event can be delayed by a complete TDMA round,
implying a delay of 13 msec in the above example. These delays can be reduced by
the installation of a field bus with a wider bandwidth, e.g., 48 kbit/sec or 100
kbit/sec.

POINTS TO REMEMBER

• TTP is a time-division-multiple-access (TDMA) protocol where every node is
allowed to send a message in a predetermined statically assigned time slot on a
shared communication channel.

In TTP, the operation of the communication system is autonomous, and
independent of the software in the host. Even a malicious host cannot interfere
with the proper operation of the protocol.

The regularity of a TDMA system is used to optimize the TTP protocol. The

message and sender name are not be part of a message because the identity of a
message can be uniquely retrieved from the a priori known point in time of
message transmission.

TTP/C is the full version of the time-triggered protocol that provides all services
needed for the implementation of a fault-tolerant distributed system.

TTP/A is a scaled-down version of the time-triggered protocol that is intended for
non fault-tolerant low-cost field bus applications.

A node of a TTP system consists of two subsystems, the communication
controller and the host.

The communication-network interface (CNI) is the node-internal interface
between the communication system and the host. It is the most important
interface within a time-triggered architecture because it is the only interface that

•

•

•

•

•

•

CHAPTER 8 THE TIME-TRIGGERED PROTOCOLS 189

is visible to the software of the host computer, and thus constitutes the
programming interface of a TTP network.

The CNI contains state messages. It is a data-sharing interface that can be
implemented in a dual-ported memory (DPRAM).

The Message Descriptor List (MEDL) is the static data structure within each
TTP controller that controls when a message must be sent on, or received from,
the communication channels.

In TTP the same data element can be named differently in the communicating
hosts. On the network, the name of the data element is mapped into the a priori

known point of time of message transmission.

The consistency of the data transfer across the CNI is controlled by the non-
blocking-write protocol (NBW).

The node membership vector contains as many bits as there are nodes in a
cluster. Each node is assigned to a specified bit position of the membership
vector. When this bit is set to "TRUE" the node is operating at the current SRU
time, if this bit is set to "FALSE", this node is not operating.

The h-state of a TTP controller (C-state) consists of the SRU time, the node
membership vector and the current position in the message descriptor list.

To enforce agreement on the C-state of all nodes of an ensemble, TTP calculates
the CRC at the sender over the message contents concatenated with the C-state
of the sender. The CRC at the receiver is calculated over the received message
contents concatenated with the C-state of the receiver. If the result of the CRC
check at the receiver is negative then either the message was corrupted during
transmission, or there is a disagreement between the C-states of the sender and
receiver. In both cases the message is discarded.

If more than half of the messages received were discarded because of a failed CRC
check, the node assumes that its C-state differs from the majority, terminates its
operation and thus leaves the membership. This mechanism avoids clique
formation among the nodes of the ensemble.

A TTP/C frame consists of three fields, a one-byte header, up to sixteen bytes of
data, and a two byte CRC field.

In TTP/A the communication is organized into rounds that start with a special
control byte, the Fireworks byte, that is transmitted by the active master. The
Fireworks byte contains the name of the active MEDL.

The Fireworks byte has characteristic features in the value domain and in the
time domain that differentiate the Fireworks byte from the data bytes within a
TTP/A round.

•

•

•

•

•

•

•

•

•

•

•

190 CHAPTER 8 THE TIME-TRIGGERED PROTOCOLS

BIBLIOGRAPHIC NOTES

The insights gained during more than ten years of research on fault-tolerant real-time
systems in the context of the MARS project [Kop89] formed the basis for the
development of the time-triggered protocols. The first publication of the protocol
occurred in 1993 at the FTCS conference [Kop93a]. The TTP/A protocol was first
published at the annual congress of the Society of Automotive Engineers (SAE) in
1995 [Kop95c].

REVIEW QUESTIONS AND PROBLEMS

8.1

8.2

What services are provided by the TTP/C protocol?

How is the regularity inherent in the TDMA access strategy used to increase
the data efficiency of the protocol and to improve the robustness of the
protocol?

Explain the programming interface of a TTP controller? What are the contents

of the status area and the control area of the CNI? What are the contents of the
status byte of each message.

How is the consistency of the data transfer across the CNI enforced by the
protocol?

Why is the control data structure that controls the protocol operation stored in
the TTP controller and not in the host?

What mechanism helps to ensure the fail-silence of a TTP controller in the
temporal domain?

What system must implement the fail-silence in the value domain?

What are the differences between the TTP/C protocol and the TTP/A protocol?

What is the controller state (C-state) of a TTP/C controller? How is the
agreement of the C-state enforced within an ensemble?

Explain the operation of the membership service of the TTP/C protocol. How
is the situation that a node does not receive a message from its immediate
predecessor resolved? (In this scenario the node does not know if its incoming
link is faulty or the predecessor has not sent a correct message).

8.11 Explain the clock synchronization of the TTP/C protocol.

8.12 Sketch the contents of the Message Descriptor List (MEDL) that controls the
protocol operation.

8.13 What is the difference between an immediate mode change and a delayed mode
change?

8.14 What is the frame format of a TTP/C frame on the network? What are the
contents of the header byte?

8.15 Explain the principle of operation of the TTP/A protocol. Describe the
concept of a "round".

8.16 How can one distinguish between a Fireworks byte and a data byte in the
TTP/A protocol?

8.3

8.4

8.5

8.6

8.7

8.8

8.9

8.10

CHAPTER 8 THE TIME-TRIGGERED PROTOCOLS 191

8.17 Estimate the average and worst-case response time of a TTP/C system with 5
FTUs, each one consisting of two nodes that exchange messages with 6 data
bytes on a channel with a bandwidth of 1 Mbit/sec. Assume that the
interframe gap is 8 bits.

Calculate the data efficiency of a TTP/A system that consists of 8 nodes where
each node sends periodically a two byte message (user data). Assume that the
intermessage gap between the Fireworks byte and the first data byte is 4
bitcells, and the intermessage gap between two successive data bytes is two
bitcells. The gap between the end of one round and the start of the next round
is 6 bitcells. What is the data efficiency of a functionally equivalent CAN
system with a two byte data field (see Section 7.5.3)? Assume that the
intermessage gap in the CAN system is 4 bitcells.

8.18

This page intentionally left blank.

Chapter 9

Input/Output

OVERVIEW

This chapter covers the input/output between a node and the controlled object. It
starts with a discussion on the dual role of time at the I/O interface: time can act as a
control signal causing the immediate activation of a computational activity, and time
can be treated as data that records the occurrence of an external event on the time line.
If time is treated as data, then the temporal control structure within the computer is
not affected by the occurrence of the external event. In many situations, the I/O
interface can be simplified by treating time as data and not as a control signal.
Section 9.2 introduces the notions of raw data, measured data, and agreed data. It then
continues with a discussion about the different types of agreement, syntactic
agreement and semantic agreement.

The differences between sampling, polling, and interrupts are the topic of Section
9.3. From the functional point of view, sampling and polling are identical. However,
from the robustness point of view, sampling is superior to polling. Section 9.4 is
devoted to a discussion of interrupts. An interrupt is a powerful, and therefore
potentially dangerous, mechanism that interferes with the temporal control structure
within a node.

Sensors and actuators are the topic of Section 9.5. The concept of the intelligent
instrumentation that hides the concrete world interface and interacts with the
computer by a standard, more abstract message interface is elaborated. The notion of
fault-tolerant actuators and fault tolerant sensors is introduced. Some hints concerning
the physical installation of the I/O system are given in Section 9.6.

194 CHAPTER 9 INPUT/OUPUT

A node can interact with its environment by two subsystems: the communication
subsystem and the input/output subsystem (instrumentation interface). The
implementation of a field bus (see Section 7.3.3) extends the scope of the
communication system and pushes the "real" I/O issues to the field bus nodes that
interact directly with the sensors and actuators in the (remote) environment. At the
expense of an additional delay, a field bus simplifies the I/O interface of a node, both
from the logical and the installation point of view.

9.1

Every I/O signal has two dimensions, the value dimension and the temporal
dimension. The value dimension relates to the value of the I/O signal. The temporal
dimension relates to the moment when the value was recorded from the environment
or released to the environment. In the context of hardware design, the value
dimension is concerned with the contents of a register and the temporal dimension is
concerned with the trigger signal, i.e., the control signal that determines when the
contents of an I/O register are transferred to another subsystem.

An event that happens in the environment of a real-time computer can be looked
upon from two different perspectives:

(i) It defines the point in time of a value change of an RT entity. The precise
knowledge of this point in time is an important input for the later analysis of
the consequences of the event (time as data).

(ii) It may demand immediate action by the computer system to react as soon as
possible to this event (time as control).

It is important to distinguish between these two different roles of time. In the
majority of situations, it is sufficient to treat time as data and only in the minority of
cases an immediate action of a computer system is required (time as control).

Example: Consider a computer system that must measure the time interval
between "start" and "finish" during a downhill skiing competition. In this application
it is sufficient to treat time as data and to record the precise time of occurrence of the
start event and finish event. The messages that contain these two time points are
transported to a central computer that later calculates the difference. The situation of a
train-control system that recognizes a red alarm signal, meaning the train should stop
immediately, is different. Here, an immediate action is required as a consequence of
the event occurrence. The occurrence of the event must initiate a control action
without delay.

9.1.1 Time as Data

The implementation of time as data is simple if a global time-base of known
precision is available in the distributed system. The observing field bus node must
include the timestamp of the event into the observation message. We call a message
that contains the timestamp of an event, a timed message. The timed message can be

THE DUAL ROLE OF TIME

CHAPTER 9 INPUT/OUPUT 195

sent at a preplanned point in time and does not require any dynamic data-dependent
modification of the temporal control structure. Alternatively, if a field bus
communication protocol with a known constant delay is used, the time of message
arrival, corrected by this known delay, can be used to derive the send time of the
message.

The same technique of timed messages can be used on the output side. If an output
signal must be invoked on the environment at a precise point in time, the granularity
of which is much finer than the static periods or the jitter of the output messages,
then, a timed output message can be sent to the node controlling the actuator. This
node interprets the time in the message and acts on the environment precisely at the
intended moment.

In a TT system that exchanges messages at a priori known points in time, with a
fixed period between messages, the representation of time in a timed message can
take advantage of this a priori information. The time value can be coded in fractions
of the period of the message, thus increasing the data efficiency. For example, if an
observation message is exchanged every 10 msec, then a 7 bit time representation of
time relative to the start of the period will identify the event with a granularity of
better than 100 µsec. Such a 7-bit representation of time, along with the additional
bit to denote the event occurrence, can be packed into a single byte.

9.1.2 Time as Control

Time as control is much more difficult to implement than time as data, because it
may require a dynamic data-dependent modification of the temporal control structure
(see Section 4.4). It is prudent to scrutinize the application requirements carefully to
identify those cases where such a dynamic scheduling of the tasks is absolutely
necessary. The issue of dynamic task scheduling will be discussed in Chapter 11.

If an event requires immediate action, the worst-case delay of the message
transmission is a critical parameter. In an event-triggered protocol, such as CAN, the
message priorities are used to resolve access conflicts to the common bus that result
from nearly simultaneous events. The worst-case delay of a particular message can be
calculated by taking the peak-load activation pattern of the message system into
account [Tin95]. In a time-triggered protocol such as TTP, the mode change
mechanism is provided to implement a data dependent change of the control structure.
This mechanism guarantees that a mode change request will be honored within a
worst-case delay of a basic TDMA round.

Example: The prompt reaction to an emergency shutdown request requires time to
act as control. Assume that the emergency message is the highest priority message.
In a CAN system the worst-case delay of the highest priority message is bounded by
the transmission duration of the longest message, because a message transmission
cannot be preempted. In a TTP system, the worst-case delay for a mode change is
bounded by the duration of a TDMA round.

196 CHAPTER 9 INPUT/OUPUT

9.2 AGREEMENT PROTOCOLS

Sensors and actuators have failure rates that are considerably higher than those of
single-chip microcomputers. No critical output action should rely on the input from
a single sensor. It is necessary to observe the controlled object by a number of
different sensors and to relate these observations to detect erroneous sensor values, to
observe the effects of actuators, and to get an agreed image of the state of the
controlled object. In a distributed system, agreement always requires an information
exchange among the agreeing partners. The number of rounds of such an information
exchange that are needed depends on the type of agreement and the assumptions about
the possible sensor failures.

9.2.1

In Section 1.2.1, the concepts of raw data, measured data, and agreed data have been
introduced: raw data are produced at the digital hardware interface of the physical
sensor. Measured data, presented in standard engineering units, are derived from one or
a sequence of raw data samples by the process of signal conditioning. Measured data
that are judged to be a correct image of the RT entity, e.g., after the comparison with
other measured data elements that have been derived by diverse techniques, are called
agreed data. Agreed data form the inputs to control actions. In a safety critical system,
where no single point of failure is allowed to exist, an agreed data element may not
originate from a single sensor. The challenge in the development of a safety critical
input system is the selection and placement of the redundant sensors, and the design
of the agreement algorithms. We distinguish between two types of agreement,
syntactic agreement and semantic agreement.

9.2.2 Syntactic Agreement

Assume that a single RT entity is measured by two independent sensors. When the
two observations are transformed from the domain of analog values to the domain of
discrete values, a slight difference between the two raw values caused by a
measurement and digitalization error is unavoidable. These different raw data values
will cause different measured values. A digitalization error also occurs in the time
domain when the time of occurrence of an event in the controlled object is mapped
into the discrete time of the computer. Even in the fault-free case, these different
measured values must be reconciled in some way to present an agreed view of the RT
entity to the, possibly replicated, control tasks. In syntactic agreement, the agreement
algorithm computes the agreed value without considering the context of the measured
values. For example, the agreement algorithm always takes the average of a set of
measured data values.

If one of the sensor readings can be erroneous, then the assumed failure model of the
failed sensor determines how many measured data values are needed to detect the
erroneous sensor [Mar90]. In the worst case, when the sensor can behave in a
Byzantine fashion, up to four raw data values may be needed to tolerate such a

Raw Data, Measured Data, and Agreed Data

CHAPTER 9 INPUT/OUPUT 197

malicious sensor fault (see Section 6.4). Syntactic agreement without any restrictions
of the failure modes of a sensor is the most costly form of agreement among a set of
sensor values. In case a more restrictive failure mode of a sensor can be assumed,
e.g., a fail-silent failure, then the number of rounds and the amount of information
that must be exchanged to achieve syntactic agreement can be considerably reduced
[Pol95a].

9.2.3 Semantic Agreement

If the meanings of the different measured values are related to each other by a process
model that is based on a priori knowledge about the physical characteristics of the
controlled object, then we speak of semantic agreement. In semantic agreement it is
not necessary to duplicate or triplicate every sensor. Different RT-entities are
observed by different sensors. These sensor readings are related to each other to find a
set of plausible agreed values and to locate implausible values that indicate a sensor
failure. Such an erroneous sensor value must be replaced by a calculated estimate of
the most probable value at the given point in time, based on the inherent semantic
redundancy in the set of measurements.

Example: A number of laws of nature govern a chemical process: the conservation
of mass, the conservation of energy, and some known maximum speed of the
chemical reaction. If the input and output entities are measured by individual sensors,
these fundamental laws of nature can be applied to check the plausibility of the
measured data set. In case one sensor reading deviates significantly from all other
sensors, a sensor failure is assumed and the failed value is replaced by an estimate of
the correct value at this moment, to be able to proceed with the control of the
chemical process.

Semantic agreement requires a fundamental understanding of the applied process
technology. It is common that an interdisciplinary team composed of process
technologists, measurement specialists and computer engineers cooperates to find the
RT entities that can be measured with good precision at reasonable cost. Typically,
for every output value, about three to seven input values must be observed, not only
to be able to diagnose erroneous measured data elements, but also to check the proper
operation of the actuators. The proper operation of every actuator must be monitored
by an independent sensor that observes the intended effect of the actuator (see Section
7.1.4).

In engineering practice, semantic agreement of measured data values is more
important than the syntactic agreement. As a result of the agreement phase, an agreed
(and consistent) set of digital input values is produced. These agreed values, defined in
the value domain and in the time domain, are then used by all (replicated) tasks to
achieve a replica-determinate behavior of the control system.

198 CHAPTER 9 INPUT/OUPUT

9.3 SAMPLING AND POLLING

In sampling, the state of an RT entity is periodically interrogated by the computer
system at points in time called the sampling points. The temporal control always
remains within the computer system. The constant time interval between two
consecutive sampling points is called the sampling interval.

9.3.1 Sampling of Analog Values

The most recent current value of an analog RT entity is observed at a moment
determined by the computer system (Figure 9.1).

Figure 9.1: Sampling of an analog value.

In a TT architecture, the sampling points can be coordinated a priori with the
transmission schedule to generate phase-aligned transactions (see Section 5.4. 1). In a
phase-aligned transaction, all processing and communication activities of a
transaction follow each other without any unnecessary latency within the transaction.
Such a phase-aligned transaction provides the shortest possible response time of a
transaction (Figure 9.2).

Figure 9.2: Sequence of communication and processing steps
in a phase-aligned transaction.

9.3.2 Sampling of Digital Values

When sampling a digital value, the current state and the temporal position of the
most recent state change are often of interest. While the current state is observed at
the sampling point, the temporal position of the most recent state change can only

CHAPTER 9 INPUT/OUPUT 199

be inferred by comparing the current observation with the most recent observation.
The precision of this time measurement is limited by the duration of the sampling
interval.

If the state of the RT entity changes more than once within a single sampling
interval, some state changes will evade the observation. Figure 9.3 shows the
sequence of values taken by an RT-entity and the values as seen by the observer
without a memory element at the RT entity (Figure 9.3(a)). The small peak in the
middle does not appear in the observations because it occurs just between two
sampling points.

Figure 9.3: Sampling of RT entity, (a) without a memory element and
(b) with a memory element at the observer.

If every event in the RT entity is significant, then a memory element (Figure 9.4)
must be implemented at the RT entity that stores any state change until the next
sampling point (Figure 9.3 (b)). The memory element can be reset after it has been
read.

Figure 9.4: Sensor with memory element at sensor.

In the example of Section 4.4.2, describing the time-triggered solution to the lift
control problem, the memory element in the lift call button stores a call request until
the computer samples the call button.

Even with a memory element at the observer it is possible for some state changes to
evade the observation. The small additional peak in the value sequence of the RT
entity of Figure 9.5 does not show up in the observed values.

200 CHAPTER 9 INPUT/OUPUT

Figure 9.5: Short-lived states evade the observation.

A sampling system acts as a low-pass filter and cuts off all high frequency parts of
the signal. From the point of view of system specification, a sampling system can
be seen as protecting a node from more events in the environment than are stated in
the system specification.

9.3.3 Polling

The difference between polling and sampling is in the position of the memory
element. While in sampling systems the memory element is at the sensor and thus
outside the sphere of control of the computer, in polling systems the memory
element resides inside the computer system as shown in Figure 9.6.

Figure 9.6: Polling system.

From a functional point of view, there is no difference between sampling and polling
as long as no faults occur. Under fault conditions, the sampling system is more
robust than the polling system for the following two reasons:

(i) A transient disturbance that occurs on the transmission line between the sensor
and the computer will only affect a sampling system if the fault overlaps the
sampling point. If in the above mentioned lift-call button example in Section
4.4.2, the sampling period is 100 msec and the sampling action takes 100 µsec,
the probability that the fault will interfere with the operation of the sampling
system is about 0.1%. In a polling system, every single fault will be stored in
the memory element at the computer and thus manifest itself as an error in the
data. The memory element in the polling system acts as an "integrator" of all
faults.

In case of a node shutdown and restart, the contents of all RAM like memory in
the sphere of control of the computer are lost. The external memory element in

(ii)

CHAPTER 9 INPUT/OUPUT 201

a sampling system survives the computer reset and can be read after the restart
of the computer.

9.4 INTERRUPTS

The interrupt mechanisms empower a device outside the sphere of control of the
computer to govern the temporal control pattern inside the computer. This is a
powerful and potentially dangerous mechanism that must be used with great care.
When a state change in the memory element of Figure 9.7 takes place and the
corresponding interrupt is enabled, then, a hardware mechanism forces a control
transfer to an interrupt service routine to service the recognized event. Because an
enabled interrupt can occur at any point of the logical control flow, an interrupt is
even more dangerous than the often forbidden GOTO statement.

Figure 9.7: The interrupt mechanism.

From the fault-tolerance point of view, an interrupt mechanism is even less robust
than the already denounced polling mechanism. Every transient error on the
transmission line will interfere with the temporal control scheme within the
computer. It will generate an additional unplanned processing load for the detection of
a faulty sporadic interrupt, making it more difficult to meet the specified deadlines.

9.4.1 When Are Interrupts Needed?

Interrupts are needed when an external event requires such a short reaction time from
the computer that it is not possible to implement this reaction time efficiently with
sampling, i.e., when the event occurrence must influence the temporal control inside
the computer ("time as control"). When sampling analog values, an interrupt does
not lead to any response time improvement if the transaction is phase aligned.

In Section 4.4.4 the concept of a trigger task was introduced to sample external RT
entities. A trigger task extends the response time of an RT transaction by at most
one period of the trigger task, even if the rest of the transaction is phase aligned. This
additional delay caused by the trigger task can be reduced by increasing the trigger
task frequency at the expense of an increased overhead. [Pol95b] has analyzed this
increase in the overhead for the periodic execution of a trigger task as the required
response time approaches the WCET of the trigger task. As a rule of thumb, if the
required response time is less than ten times the WCET of the trigger task, then the
implementation of an interrupt should be considered for performance reasons.

Example: Consider the application depicted in Figure 9.8. The level of water in a
water reservoir is controlled by a computer system. The water level is measured by a

202 CHAPTER 9 INPUT/OUPUT

digital sensor. If the water rises above the high-level mark,' the sensor produces a
rising edge to the state "high". If the water falls below the high-level mark, the
sensor produces a falling edge to the state "low". Whenever the water level exceeds
the high-level mark, an overflow valve must be opened by the computer to start
generating electric power.

Figure 9.8: Computer system controlling the water level in a reservoir.

If the water-level sensor is connected to an interrupt line of the computer, then an
interrupt will be generated whenever a wave covers the sensor. Since there are big
waves, and superimposed small waves, and so on, it is difficult to derive the
maximum interrupt frequency. The system will be more robust if the sensor is
attached to a digital input line, and is sampled by a periodic trigger task. If, over a
specified interval of time, the number of sensor readings that indicate "high" is larger
than the number of sensor readings that indicate "low", the valve will be opened.

9.4.2 Monitoring the Occurrence of an Interrupt

In an interrupt driven system, a transient error on the interrupt line may upset the
temporal control pattern of the complete node and may cause the violation of
important deadlines. Therefore, the time interval between the occurrence of any two
interrupts must be continuously monitored, and compared to the minimum duration
between interrupting events that must be contained in the specification.

Figure 9.9: Time window of an interrupt.

There are three tasks in the computer associated with every monitored interrupt
[Pol96a] (Figure 9.9). The first and second one are dynamically planned TT tasks that
determine the interrupt window. The first one enables the interrupt line and thus
opens the time window during which an interrupt is allowed to occur. The third task
is the interrupt service task that is activated by the interrupt. Whenever the interrupt

CHAPTER 9 INPUT/OUPUT 203

has occurred the interrupt service task closes the time window by disabling the
interrupt line. It then deactivates the scheduled future activation of the second task. In
case the third task was not activated before the start of the second task, the second
task, a dynamic TT task scheduled at the end of the time window, closes the time
window by disabling the interrupt line. The second task then generates an error flag
to inform the application of the missing interrupt.

The two time-triggered tasks are needed for error detection. The first task detects a
sporadic interrupt that should not have occurred. The second task detects a missing
interrupt that should have occurred. These different errors require different types of
error handling. The more we know about the regularity of the controlled object, the
smaller we can make the time window in which an interrupt may occur. This leads to
better error-detection coverage.

Example: The engine controller example of Section 1.7.2 has such a stringent
requirement regarding the point of fuel injection relative to the position of the piston
in the cylinder that the implementation must use an interrupt for measuring the
position. The position of the piston and the rotational speed of the crankshaft are
measured by a number of sensors that generate rising edges whenever a defined
section of the crankshaft passes the position of the sensor. Since the speed and the
maximum angular acceleration (or deceleration) of the engine is known, the next
correct interrupt must arrive within a small dynamically defined time window from
the previous interrupt. The interrupt logic is only enabled during this short window,
and disabled at all other times to reduce the impact of sporadic interrupts on the
temporal control pattern within the host software.

9.5 SENSORS AND ACTUATORS

A set of transducers (sensor and actuators) is located in the controlled object to
measure the selected RT entities, or to accept RT images from the controlling
computer. These transducers deliver/accept different types of input/output signals.

9.5.1 Analog Input/Output

Many RT entities are observed by sensors that produce analog values in the standard
4-20 mA range (4 mA meaning 0% of the value, and 20 mA meaning 100% of the
value). If a measured value is encoded in the 4-20 mA range, then, it is possible to
distinguish between a broken wire, where no current flows (0 mA), and a measured
value of 0% (4 mA).

Without special precautions, the accuracy of any analog control signal is limited by
the electrical noise level, even in favorable situations, to about 0.1 %. Analog-to-
digital (AD) converters with a resolution of more than 10 bits require a carefully
controlled physical environment that is not available in typical industrial
applications. A 16-bit word length is thus more than sufficient to encode the value of
an RT entity measured by an analog sensor. This is one reason why 16-bit wide
computer architectures are common in the field of industrial control.

204 CHAPTER 9 INPUT/OUPUT

The time interval between the occurrence of a value in the RT entity and the
presentation of this value by the sensor at the sensor/computer interface is determined
by the transfer function of the particular sensor. The step response of a sensor (see
Figure 1.4), denoting the lag and the rise time of the sensor, gives an approximation
of this transfer function. When reasoning about the temporal accuracy of a
sensor/actuator signal, the parameters of the transfer functions of the sensors and the
actuators must be considered (Figure 9.10). They reduce the available time interval
between the occurrence of a value at the RT entity, and the use of this value for an
output action by the computer. Transducers with short response times increase the
length of the temporal accuracy interval that is available to the computer system.

Figure 9.10: Time delay of a complete I/O transaction.

9.5.2 Digital Input/Output

A digital I/O signal transits between the two states TRUE and FALSE. In many
applications, the length of the time interval between two state changes is of semantic
significance. In other applications, the moment when the transition occurs is
important.

If the input signal originates from a simple mechanical switch, the new stable state
is not reached immediately but only after a number of random oscillations
(Figure 9.1 1), called the contact bounce, caused by the mechanical vibrations of the
switch contacts. This contact bounce must be eliminated either by an analog low-
pass filter or, more often, within the computer system by software tasks, e.g.,
debouncing routines. Due to the low price of a microcontroller, it is cheaper to
debounce a signal by software techniques than by hardware mechanisms (e.g., a low
pass filter).

Figure 9.11: Contact bounce of a mechanical switch.

A number of sensor devices generate a sequence of pulse inputs, where each pulse
carries information about the occurrence of an event. For example, distance
measurements are often made by a wheel rolling along the object that must be
measured. Every rotation of the wheel generates a defined number of pulses that can
be converted to the distance traveled. The frequency of the pulses is an indication of
the speed. If the wheel travels past a defined calibration point, an additional digital

CHAPTER 9 INPUT/OUPUT 205

input is signaled to the computer to set the pulse counter to a defined value. It is
good practice to convert the relative event values to absolute state values as soon as
possible.

Time Encoded Signals: Many output devices are controlled by pulse sequences
of well-specified shape (pulse width modulation–PWM). For example, a control
signal for a stepping motor must adhere precisely to the temporal shape prescribed by
the motor hardware supplier. A number of microcontrollers designed for I/O provide
special hardware support for generating these digital pulse shapes.

9.5.3 Fault-Tolerant Actuators

An actuator must transduce the electrical signal generated at the output interface of
the computer into some action in the controlled object (e.g., opening of a valve). The
actuators form the last element in the chain between sensing the values of an RT-
entity and realizing the intended effect in the environment. In a fault-tolerant system,
the actuators must also be fault-tolerant to avoid a single point of failure. Figure
9.12 shows an example where the intended action in the environment is the
positioning of a mechanical lever. At the end of the lever there may be any
mechanical device that acts on the controlled object, e.g., there may be a piston of a
control valve mounted at the point of action.

Figure 9.12: Fault-tolerant actuators.

In a replica-determinate architecture, the correct replicated channels produce identical
results in the value and in the time domains. We differentiate between the cases where
the architecture supports the fail-silent property (Figure 9.12(a)), i.e., all failed
channels are silent, and where the fail-silence property is not supported (Figure
9.12(b)), i.e., a failed channel can show an arbitrary behavior in the value domain.

Fail-Silent Actuator: In a fail-silent architecture, all subsystems must support
the fail-silence property. A fail-silent actuator will either produce the intended
(correct) output action or no result at all. In case a fail-silent actuator fails to produce
an output action, it may not hinder the activity of the replicated fail-silent actuator.
The fail-silent actuator of Figure 9.12(a) consists of two motors where each one has
enough power to move the point of action. Each motor is connected to one of the
two replica-determinate output channels of the computer system. If one motor fails at

206 CHAPTER 9 INPUT/OUPUT

any location, the other motor is still capable to move the point of action to the
desired position.

Triple Modular Redundant Actuator: The Triple-Modular Redundant (TMR)
actuator (Figure 9.12 (b)) consists of three motors, each one connected to one of the
three replica-determinate output channels of the fault-tolerant computer. The force of
any two motors must be strong enough to override the force of the third motor,
however, any single motor may not be strong enough to override the other two. The
TMR actuator can be viewed as a "mechanical" voter that will place the point of
action into a position that is determined by the majority of the three channels,
outvoting the disagreeing channel.

9.5.4 Intelligent Instrumentation

There is an increasing tendency to encapsulate a sensor/actuator and the associated
microcontroller into a single physical housing to provide a standard abstract message
interface to the outside world that produces measured values at the field bus (Figure
9.13). Such a unit is called an intelligent instrument.

Figure 9.13: Intelligent instrumentation.

The intelligent instrument hides the concrete sensor interface. Its single chip
microcontroller provides the required control signals to the sensor/actuator, performs
signal conditioning, signal smoothing and local error detection, and presents/takes a
meaningful RT image in standard measuring units to/from the field bus message
interface, Intelligent instruments simplify the connection of the plant equipment to
the computer.

Example: An acceleration sensor, micromachined into silicon, mounted with the
appropriate microcontroller and network interface into a single package, forms an
intelligent sensor.

To make the measured value fault-tolerant, a number of independent sensors can be
packed into a single intelligent instrument. Inside the intelligent instrument an
agreement protocol is executed to arrive at an agreed sensor value, even if one of the
sensors has failed. This approach assumes that independent measurements can be
taken in close spatial vicinity.

CHAPTER 9 INPUT/OUPUT 207

The integration of a field bus node with an actuator produces an intelligent actuator
device.

Example: An actuator of an airbag in an automobile must ignite an explosive
charge to release the gas of a high-pressure container into the airbag at the appropriate
moment. A small explosive charge, placed directly on the silicon of a
microcontroller, can be ignited on-chip. The package is mounted at the proper
mechanical position to open the critical valve. The microcontroller including the
explosive charge forms an intelligent actuator.

Because many different field bus designs are available today, and no generally accepted
industry wide field bus standard has emerged, the sensor manufacturer must cope with
the dilemma to provide a different intelligent instrument network interface for every
different field bus. One solution, proposed by the emerging IEEE Standard P1451 on
Transducer to Microprocessor Interface [Woo96], is the definition of a standard digital
interface between the intelligent sensor and the network controller (Figure 9.4)

9.6 PHYSICAL INSTALLATION

It is beyond the scope of this book to cover all the issues that must be considered in
the physical installation of a sensor based real-time control system. These complex
topics are covered in books on computer hardware installation. However, a few
critical issues are highlighted.

Power Supply: Many computer failures are caused by power failures. According
to [Gra94, p.108], there are on average about 2.3 power outage events per year with
an average duration of 54 minutes in North America. These numbers do not include
sags, i.e., outages of less than a second, and surges, i.e., over voltages that can
damage the sensitive electronic equipment. The provision of a reliable and clean
power source is thus of crucial importance for the proper operation of any computer
system.

Figure 9.14: Tree-like structure of a grounding system.

Grounding: The design of a proper grounding system in an industrial plant is a
major task that requires considerable experience. Many transient computer hardware
failures are caused by deficient grounding systems. It is important to connect all units
in a tree-like manner (Figure 9.14) to a high quality true ground point. Loops in the
ground circuitry must be avoided because they pick up electromagnetic disturbances.

208 CHAPTER 9 INPUT/OUPUT

Electric Isolation: In many applications, complete electric isolation of the
computer terminals from the signals in the plant is needed. Such isolation can be
achieved by optocouplers for digital signals or signal transformers for analog signals.

POINTS TO REMEMBER

• The implementation of a field bus extends the scope of the communication
system and pushes the "real" I/O issues to the field bus nodes.

The value dimension of an I/O signal relates to the value of the signal. The
temporal dimension relates to the moment when the value was recorded from the
environment, or released to the environment.

In the majority of situations, it is sufficient to treat time as data, and only in the
minority of cases an immediate action of a computer system is required (time as
control).

If time can be treated a data, a timed message can be introduced which can be sent
at a preplanned point in time. A timed message does not require any dynamic
data-dependent modification of the temporal control structure.

Time as control may require a dynamic data-dependent modification of the
temporal control structure.

A data element that is measured at the I/O interface of a sensor, is called a raw

data element. A raw data element that is calibrated and converted to standard
technical units is called a measured data element. A measured data element that is
consistent with other measured data elements (from different sensors) is called an
agreed data element.

In syntactic agreement, the agreement algorithm computes the agreed data
without considering the context of the measured data. Syntactic agreement
without any restrictions of the failure modes of a sensor is the most costly form
of agreement among a set of sensor values.

In semantic agreement, different RT-entities are observed by different sensors and
these sensor readings are related to each other to find a set of plausible agreed
values, and to locate implausible values that indicate a sensor failure. It is not
necessary to duplicate or triplicate every sensor.

In sampling and polling, the state of an RT entity is periodically interrogated by
the computer system at points in time that are in the sphere of control of the
computer system.

From the functional point of view, sampling and polling are the same. From the
fault-tolerance point of view, sampling is more robust than polling.

The interrupt mechanisms empower a device outside the sphere of control of the
computer to govern the temporal control pattern inside the computer. This is a
powerful and potentially dangerous mechanism that must be used with great care.

•

•

•

•

•

•

•

•

•

•

CHAPTER 9 INPUT/OUPUT 209

Interrupts are needed when an external event requires such a short reaction time
from the computer that it is not possible to implement this reaction time
efficiently with sampling.

The time interval between the occurrence of any two interrupts must be
continuously monitored and compared with the specified minimum duration
between interrupting events.

When reasoning about the temporal accuracy of a sensor/actuator signal, the
parameters of the transfer functions of the sensors and the actuators must be
considered because they reduce the available time interval between the occurrence
of a value at the RT entity and the use of this value for an output action by the
computer.

In a fault-tolerant system, the actuators must also be fault-tolerant to avoid a
single point of failure.

A fail-silent actuator will either produce the intended (correct) output action or no
result at all. In case a fail-silent actuator fails to produce an output action, it may
not hinder the activity of the replicated fail-silent actuator.

There is a tendency to encapsulate a sensor/actuator and the associated
microcontroller into a single physical housing to provide a standard abstract
message interface to the outside world that produces measured values at the field
bus (intelligent instrument.).

Many real-time computer systems fail because of a deficient physical installation
(power supply, grounding, electric isolation of sensor signals).

•

•

•

•

•

•

•

BIBLIOGRAPHIC NOTES

The generic problems that must be considered in the design of an I/O system are
covered in basic books on computer hardware architecture, such as the book by
Patterson and Hennessy [Pat90]. More specific advice is contained in special
electronics publications, such as [Ban86] and, more importantly, in the
documentation of computer system vendors or the chip suppliers. This topic is
receiving relatively little coverage in the computer science literature. The presented
technique for monitoring the interrupt occurrence has been published by Poledna
[Pol95b], and is used in the design of computer controlled engine management.

REVIEW QUESTIONS AND PROBLEMS

9.1

9.2

9.3

Compare the advantages and disadvantages of connecting a sensor directly to a
node of a distributed system versus the introduction of a field bus.

Explain the difference between "time as data" and "time as control"?

Assume that a single event is transmitted in a one-byte state message with a
period of 50 msec. What is the finest temporal resolution of the time of event
occurrence that can be encoded in this one-byte message?

210 CHAPTER 9 INPUT/OUPUT

9.4 Why is it important that a field bus protocol provides a known constant
transmission latency?

9.5 Discuss the worst-case response time to an emergency event recorded in a field
bus node in an event-triggered and in a time-triggered communication system.

9.6 What is the difference between raw data, measured data, and agreed data?

9.7 What is the difference between syntactic agreement and semantic agreement?

9.8 What is the differences between sampling and polling?

9.9 What is a phase-aligned transaction?

9.10 Why is an interrupt potentially dangerous and when is it needed?

9.11 What can be the consequence of a sporadic erroneous interrupt?

9.12 How can we protect the computer system from the occurrence of sporadic
erroneous interrupts?

9.13 What are accuracy limits of an analog control signal in typical industrial
applications?

9.14 Estimate the order of magnitude of the rise time of the step response function
of some typical sensors, e.g., a temperature sensor, a pressure sensor, and a
position sensor.

9.15 Sketch a software routine for a field bus node that will eliminate the contact
bounce.

9.16 What are the characteristics of fail-silent actuators and TMR actuators?

9.17 What are the advantages of an intelligent instrument?

9.18 Give an example of a fault-tolerant sensor.

9.19 Estimate the MTTF of the power system in your neighborhood.

Chapter 10

Real-Time Operating S ys tems

OVERVIEW

This chapter covers the essential services that must be provided by a real-time
operating system. It focuses on the real-time aspects of operating systems. It is
assumed that the reader is already familiar with general operating system concepts. A
real-time operating system must provide a predictable service to the application tasks
such that the temporal properties of the complete software in a node can be statically
analyzed. Many dynamic mechanisms, such as dynamic task creation or virtual
memory management, which are standard in workstation operating systems, interfere
with this predictability requirement of real-time systems.

The chapter starts with a section on task management. The state transition diagrams
of time-triggered and event-triggered tasks, with and without internal blocking, are
presented. The application program interface of the different task models is discussed.
The simpler the application program interface, the easier it is to write portable
application software. Section 10.2 covers the topic of interprocess communication. It
is argued that the classic interprocess coordination primitives, such as semaphore
operations, are too expensive for many embedded applications and simpler
alternatives must be found.

Section 10.3 is devoted to time management. A real-time operating system must
provide a clock synchronization service and a number of additional time services that
are discussed in this section. Error detection is the topic of Section 10.4. Error
detection in the time domain is of particular importance if an architecture is based on
the fail-silent assumption.

The final section presents a case study of the real-time operating system ERCOS
(Embedded Real-time Control Operating System). ERCOS is an industrial real-time
operating system used in embedded automotive applications. It provides many of the
services that are discussed in this chapter.

212 CHAPTER 10 REAL-TIME OPERATING SYSTEMS

A real-time operating system must provide predictable service to the application tasks
executing within the host. The worst-case administrative overhead (WCAO) of every
operating system service must be known a priori, so that the temporal properties of
the behavior of the complete host can be determined analytically.

To make such an analytic analysis of the WCAO feasible, a hard real-time operating
system must be very careful in supporting the dynamic services that are common in
standard operating systems: dynamic task creation at run time, virtual memory
management, and dynamic queue management.

There are a number of standard workstation operating systems, e.g., UNIX-based
systems, that provide extensions to improve the temporal performance, e.g., the
capability to lock tasks in main memory,, to implement user supplied real-time
scheduling algorithms and others. An example of such a system is real-time UNIX
[Fur89]. As long as these systems do not support the analytical analysis of their
temporal behavior under all specified load and fault conditions, they can only be
applied in a soft real-time environment, where a failure to miss a deadline is not
catastrophic. If the temporal performance of an operating system cannot be guaranteed
a priori, the operating system lacks one of the most important requirements of a hard
real-time system.

10.1 TASK MANAGEMENT

Task management is concerned with the provision of the dynamic environment
within a host for the initialization, execution, and termination of application tasks.

10.1.1 TT Systems

In an entirely time-triggered system, the temporal control structure of all tasks is
established a priori by off-line support tools. This temporal control structure is
encoded in a Task-Descriptor List (TADL) that contains the cyclic schedule for all
activities of the node (Figure 10.1). This schedule considers the required precedence
and mutual exclusion relationships among the tasks such that an explicit
coordination of the tasks by the operating system at run time is not necessary.

Figure 10.1: Task descriptor list in a TT operating system.

The dispatcher is activated by the synchronized clock tick. It looks at the TADL, and
then performs the action that has been planned for this instant. If a task is started, the
operating system informs the task of its activation time, which is synchronized
within the cluster. After task termination, the operating system copies the results of
the task to the CNI.

CHAPTER 10 REAL-TIME OPERATING SYSTEMS 213

A task of a TT system with non- preemptive S-tasks (see Section 4.2.1) is in one of
the two states: inactive or active (Figure 10.2)

Figure 10.2: State diagram of a non-preemptive S-Tasks.

In a preemptive S-task, two sub-states of the active state can be distinguished, ready
or running, depending on whether the task is in possession of the CPU or not
(Figure 10.3).

Figure 10.3: State diagram of preemptive S-tasks.

The Application Program Interface (API): The application program
interface (API) of an S-task in a TT system consists of three data structures and two
operating system calls. The data structures are the input data structure, the output data
structure, and the h-state data structure (see Section 4.6) of the task. A stateless S-
task does not have an h-state data structure at its API. The system calls are
TERMINATE TASK and ERROR. The TERMINATE TASK system call is
executed whenever the task has reached its normal termination point. In the case of an
error that cannot be handled within the application task, the task terminates its
operation with the ERROR system call.

10.1.2 ET Systems with S-Tasks

In an entirely event-triggered system, the sequence of task executions is determined
dynamically by the evolving application scenario. Whenever a significant event
happens, a task is released to the active (ready) state, and the dynamic scheduler is
invoked. It is up to the scheduler to decide at run-time which one of the ready tasks is
selected for the next service by the CPU. Different dynamic algorithms to solve the
scheduling problem are discussed in the following chapter. The WCET (Worst-case
Execution Time) of the scheduler contributes to the WCAO (Worst-case
Administrative Overhead) of the operating system.

The significant events that cause the activation of a task are:

214 CHAPTER 10 REAL-TIME OPERATING SYSTEMS

(i) an event from the node's environment, i.e., the arrival of a message or an
interrupt from the controlled object, or

(ii) a significant event inside the host, i.e., the termination of a task or some other
condition within a currently executing task, or

(iii) the progression of the clock to a specified point in time. This time point can be
specified either statically or dynamically.

Non-preemptive S-tasks: An ET operating system that supports non-
preemptive S-tasks will take a new scheduling decision after the currently running
task has terminated. This simplifies the task management in the operating system
but severely restricts its responsiveness. If a significant event arrives immediately
after the longest task has been scheduled, this event will not be considered until this
longest task has completed.

Preemptive S-tasks: In a RT operating system that supports task preemption,
each occurrence of a significant event can potentially activate a new task and cause an
immediate interruption of the currently executing task to invoke a new decision by
the scheduler. Depending on the outcome of the dynamic scheduling algorithm, the
new task will be selected for execution or the interrupted task will be continued
(Figure 10.3). Data conflicts between concurrently executing S-tasks can be avoided
if the operating system copies all input data required by this task from the global data
area and the communication-network interface (CNI) into a private data area of the
task at the time of task activation.

The Application Program Interface (API): The API of an operating system
that supports event-triggered S-tasks requires more system calls than an operating
system that only supports time-triggered tasks. Along with the data structures and the
already introduced system calls of a TT system, the operating system must provide
system calls to ACTIVATE a new task, either immediately or at some future point
in time. Another system call is needed to DEACTIVATE an already activated task.

Figure 10.4: State diagram of a preemptive C-tasks with blocking.

CHAPTER 10 REAL-TIME OPERATING SYSTEMS 2 15

10.1.3 ET Systems with C-Tasks

The state transition diagram of an ET system with C-tasks has three sub-states of the
active state, as shown in Figure 10.4.

In addition to the ready and running state, a C-task can be in the blocked state waiting
for an event outside the C-task to occur. Such an event can be a time-event, meaning
that the real-time clock has advanced to a specified point, or any other occurrence that
has been specified in the wait statement. An example of a blocked state is the
suspension of the task execution to wait for an input event message.

The WCET of a C-task cannot be determined independently of the other tasks in the
node. It can depend on the occurrence of an event in the node environment, as seen
from the example of waiting for an input message. The timing analysis is not a local
issue of a single task anymore; it becomes a global system issue. In the general case
it is impossible to give an upper bound for the WCET.

The Application Program Interface (API): The application program
interface of C-tasks is more complex than that of S-tasks. In addition to the three data
structures already introduced, i.e., the input data structure, the output data structure,
and the h-state data structure, the global data structures that are accessed at the
blocking point must be defined. System calls must be provided that specify a WAIT-
FOR-EVENT and a SIGNAL-EVENT occurrence. After the execution of the WAIT-
FOR-EVENT the task enters the blocked state. The event occurrence releases the task
from the blocked state. It must be monitored by a time-out task to avoid permanent
blocking. The time-out task must be deactivated in case the awaited event occurs
within the time-out period, otherwise the blocked task must be killed.

10.1.4 Software Portability

The complexity of the API determines the portability of the application software. A
pure TT system provides the simples API that completely separates the issues of
logical control and temporal control. Whenever this task model is used, a high
portability of the application software is ensured. The larger number and variety of
system calls in an ET system increases the coupling between application tasks and
operating system, and diminishes the portability of the application software.

Combined TT and ET Tasks: In some applications, there is a need for a
combination of TT tasks and ET tasks. If possible, an attempt should be made to
limit the number of ET tasks to situations where they are absolutely needed and to
restrict the implementation to the simpler S-task model. As shown in the following
section, there are a number of possibilities to optimize the resources required for the
coordination of TT tasks off-line, both regarding memory usage and processing
overhead. Such an optimization is only possible if a priori knowledge about the time
of task activation is available.

216 CHAPTER 10 REAL-TIME OPERATING SYSTEMS

10.2 INTERPROCESS COMMUNICATION

Interprocess communication is needed to exchange information among concurrently
executing tasks so progress towards the common goal can be achieved. There are
possible types of information exchange: the direct exchange of messages among the
involved tasks and the indirect exchange of information via a common region of data.

Messages: If interprocess communication is based on messages, a choice must be
made between event-message semantics and state-message semantics (see Section
2.1.3). In many real-time systems the sender and receiver tasks are periodic with
differing periods. In these systems the one-to-one synchronization requirement of
event messages is not satisfied. Because state messages support the information
exchange among tasks of differing periods, state-message semantics matches better
the needs of real-time applications. The operating system must implement the
atomicity property of a state message: a process is allowed to see only a complete
version of a state message. The intermediate states that occur during a state message
update must be hidden by the operating system.

Common Region of Data: The indirect exchange of information by a common
region of data is related to the state message mechanism. The main difference is the
missing atomicity property of common memory. Common memory is thus a low-
level concept of data sharing, leaving it up to the application tasks to implement data
consistency.

Figure 10.5: Critical task sections and critical data regions.

10.2.1 Semaphore Operations

Data inconsistency can arise if two tasks access a common region of data during
overlapping critical sections, and at least one of the tasks is a writing task (Figure
10.5).

The "classic" mechanism to avoid data inconsistency is to enforce mutual exclusive
execution of the critical task sections by a WAIT operation on a semaphore variable
that protects the resource. Whenever one task is in its critical section, the other task
must wait in a queue until the critical section is freed (explicit synchronization).

CHAPTER 10 REAL-TIME OPERATING SYSTEMS 217

The implementation of a semaphore-initialize operation is expensive, both regarding
memory requirements and operating system processing overhead. If a process runs
into a blocked semaphore, a context switch must be made. The process is put into a
queue and is delayed until the other process finishes its critical section. Then, the
process is dequeued and another context switch is made to reestablish the original
context. If the critical region is very small (this is the case in many real-time
applications), then, the processing time for the semaphore operations can take
hundreds of times longer than the actual reading or writing of the common data.

TT Systems: In a TT system, the static schedules of the tasks can be coordinated
off-line in a way that two tasks with critical sections that access the same region of
data will never overlap. It is then possible to maintain data consistency without the
use of semaphores (implicit synchronization).

ET Systems: In an ET system, the overhead for the semaphore operations can be
reduced if every task gets a private copy of the global data at the time of task
activation and the operating system updates the global data after task termination,
i.e., the number of accesses to the global data is bounded by two for every task
activation.

10.2.2 The Non-Blocking Write (NBW) Protocol

The implementation of the atomicity property of state messages that are exchanged
between the host computer and the communication controller at the Communication
Network Interface (CNI) requires special consideration. The CNI forms the interface
between two autonomous subsystems residing in different spheres of control. The
communication subsystem delivers new data at the CNI at its autonomous rate. It is
thus not possible for the host to delay the communication system, i.e., to exercise
back-pressure flow control.

If the software in the host is time-triggered, and synchronized with the global time of
the communication system, then, the task schedule in the host can be designed off-
line to avoid any write/read conflict at the CNI. If, however, the host software is
event-triggered, then a lock-free synchronization protocol must be implemented at the
CNI that never blocks the writer, i.e., the communication system. The non-blocking
write (NBW) protocol is an example of such a lock-free protocol [Kop93c].

The NBW protocol can be used to implement the atomicity property of messages at
the CNI of a time-triggered communication system. Let us analyze the operation of
the NBW for the data transfer across the CNI in the direction from the
communication system to the host computer. At this interface, there is one writer,
the communication system, and many readers, the tasks of the host. A reader does not
destroy the information written by a writer, but a writer can interfere with the
operation of the reader. In the NBW protocol, the writer is never blocked. It will thus
write a new version of the message into the DPRAM of the CNI whenever a new
message arrives. If a reader reads the message while the writer is writing a new
version, the retrieved message will contain inconsistent information and must be
discarded. If the reader is able to detect the interference, then the reader can retry the

218 CHAPTER 10 REAL-TIME OPERATING SYSTEMS

read operation until it retrieves a consistent version of the message. It must be shown
that the number of retries performed by the reader is bounded.

The protocol requires a concurrency control field, CCF, for every message written.
Atomic access to the CCF must be guaranteed by the hardware. The concurrency
control field is initialized to zero and incremented by the writer before the start of the
write operation. It is again incremented after the completion of the write operation.
The reader starts by reading the CCF at the start of the read operation. If the CCF is
odd, then the reader retries immediately because a write operation is in progress. At
the end of the read operation the reader checks whether the CCF has been changed by
the writer during the read operation. If so, it retries the read operation again until it
can read an uncorrupted version of the data structure.

Initialization: CCF := 0

Writer: Reader:

start: CCF_old := CCF start: CCF_begin := CCF

If CCF_begin = odd

then goto start;

<read data structure>

CCF_end := CCF;

If CCF_end CCF_begin
then goto start;

CCF := CCF_old + 1 ;

<write into data structure>

CCF := CCF_old + 2;

Figure 10.6: The non-blocking write (NBW) protocol.

It can be shown that an upper bound for the number of read retries exists if the time
between write operations is significantly longer than the duration of a write or read
operation. The worst-case extension of the execution time of a typical real-time task
caused by the retries of the reader is about a few percent of the worst-case execution
time (WCET) of the task [Kop93c].

Non-locking synchronization has been implemented recently in other real-time
systems, e.g., in a multimedia system [And95]. It has been shown that systems with
non-locking synchronization achieve better performance than systems that lock the
data.

10.3 TIME MANAGEMENT

In many real-time applications, the majority of tasks will be time-triggered, either at
a priori known points in time or at dynamically established points in time. The
operating system must provide flexible time management services to simplify the
application software.

10.3.1 Clock Synchronization

Clock synchronization is an essential service in a distributed real-time system. If this
service is not part of the communication system, it must be provided by the

CHAPTER 10 REAL-TIME OPERATING SYSTEMS 219

operating system. The precision of the clock synchronization that is implemented at
the operating system level is significantly better than the precision that is achievable
at the application level. The subject of clock synchronization has been covered
extensively in Chapter 3.

10.3.2 Provision of Time Services

Real-time applications require the following time services which must be provided by
a real-time operating system:

(i) The static (off-line) specification of a potentially infinite sequence of events at
absolute time-points that reappear with a given constant period. This service is
required for the static time-triggered activation of a task.

The dynamic (on-line) specification of a sequence of events with a given
constant period. This service is required for the dynamic time-triggered
activation of tasks.

(iii) The specification of a future point in time within a specified temporal distance
from "now". This service is required for the specification of time-outs.

(iv) The time stamping of events immediately after their occurrence.

(v) The output of a message (or a control signal) at a precisely defined point in
time in the future, either relative to "now" or at an absolute future time point.

(vi) A time conversion service that converts International Atomic Time (TAI) to the
"wall clock time" and vice versa. This is the Gregorian calendar function.

(ii)

10.3.3 Support for Time Stamping

There are a number of single chip microcomputers that support time stamping and
the precise output of a timed message (functions (iv) and (v) from above) by hardware
mechanisms. For example, the MOTOROLA 68332 microcontroller has an on-chip
Time-Processing Unit (TPU) for the generation of precise time-stamps. The TPU can
be (micro)programmed to execute a sequence of time-triggered actions autonomously,
e.g., the generation of a signal with a specified pulse form.

10.4 ERROR DETECTION

A real-time operating system must support error detection in the temporal domain
and error detection in the value domain by generic methods. Some of these generic
methods are described in this section.

10.4.1 Monitoring Task Execution Times

A tight upper bound on the worst-case execution time (WCET) of a real-time task
must be established during software development (see Section 4.5). This WCET
must be monitored by the operating system at run time to detect transient or
permanent hardware errors. In case a task does not terminate its operation within the

220 CHAPTER 10 REAL-TIME OPERATING SYSTEMS

WCET, the execution of the task is terminated by the operating system. It is up to
the application to specify which action should be taken in case of an error. There are
essentially two options: termination of the operation of the node or continuation
with the next task after setting an error flag in the global data area of the node to
inform subsequent tasks of the occurrence of the error.

10.4.2 Monitoring Interrupts

An erroneous external interrupt has the potential to disrupt the temporal control
structure of the real-time software within the node. At design time, the minimum
interarrival periods of interrupts must be known to be able to estimate the peak load
that must be handled by the software system. At run time, this minimum interarrival
period must be enforced by the operating system by disabling the interrupt line to
reduce the probability of erroneous sporadic interrupts (see Section 9.4.2).

10.4.3 Double Execution of Tasks

The fault-injection experiments in the context of the PDCS (Predictably Dependable
Computing Systems) project have shown that the double execution of tasks and the
subsequent comparison of the results is a very effective method for the detection of
transient hardware faults that cause undetected errors in the value domain (see Section
12.4.2). The operating system can provide the execution environment for the double
execution of application tasks without demanding any changes to the application task
per se. It is thus possible to decide at the time of system configuration which tasks
should be executed twice, and for which tasks it is sufficient to rely on a single
execution (see also Section 14.1.2).

10.4.4 Watchdogs

A fail-silent node will produce correct results or no results at all. The failure of a fail-
silent node can only be detected in the temporal domain. A standard technique is the
provision of a watchdog signal (heart-beat) that must be periodically produced by the
operating system of the node. If the node has access to the global time, the watchdog
signal should be produced periodically at known absolute points in time. An outside
observer can detect the failure of the node as soon as the watchdog signal disappears.

A more sophisticated error detection mechanism that also covers part of the value
domain is the periodic execution of a challenge-response protocol by a node. An
outside error detector provides an input pattern to the node and expects a defined
response pattern within a specified time interval. The calculation of this response
pattern should involve as many functional units of the node as possible. If the
calculated response pattern deviates from the a priori known correct result, an error of
the node is detected.

CHAPTER 10 REAL-TIME OPERATING SYSTEMS 221

10.5 A CASE STUDY: ERCOS

In the following sections the structure and the services of a modern operating system
for embedded applications are highlighted. As already mentioned in Chapter 1, the
high production volume of embedded systems demands reliable system solutions that
minimize the hardware resource requirements. Many design decisions in ERCOS
(Embedded Real-Time Control Operating System) [Pol96a], an operating system for
embedded real-time applications in the automotive industry, have been influenced by
this quest for optimum performance and utmost reliability.

ERCOS is used for the implementation of embedded systems, such as engine control
or transmission control, in vehicles. A typical state-of-the-art engine controller has a
memory consisting of 256 kbyte ROM and 32 kbyte RAM. It interfaces to about 80
external sensors and actuators, and is connected to the other system by a real-time
communication network, such as a CAN bus (see Section 7.5.3). The software is
organized into about 100 concurrently executing tasks. The most demanding task, the
injection control, must be precise within a few microseconds.

10.5.1 Task Model

The basic task model of ERCOS consists of S-tasks. A set of S-tasks that follow
one another in sequence forms a schedule sequence. A schedule sequence is built off-
line during the static analysis of the application software. Each schedule sequence is
assigned a given priority level, and is treated as a single unit of scheduling by the
operating system. Whenever the activation event of a schedule sequence occurs, the
whole schedule sequence is executed. The grouping of tasks into schedule sequences
reduces the number of scheduling units that must be managed at run-time by the
operating system, thus reducing memory requirements and processing load.

10.5.2 Scheduling

ERCOS supports static and dynamic scheduling of schedule sequences. The time-
triggered static schedules are developed off-line such that the required dependency
relations, such as mutual exclusion and precedence between the tasks, are integrated
into the off-line schedules and no explicit synchronization is needed.

Dynamic scheduling decisions are based on the priorities of ready schedule sequences.
Two different scheduling strategies, cooperative scheduling and preemptive

scheduling, are distinguished. Cooperative scheduling is non-preemptive at the task
level. A context switch may only take place between the tasks of a schedule
sequence. This simplifies the maintenance of data consistency, since a complete
critical section is encapsulated in a single task.

Preemptive scheduling allows the context switch at (almost) any point in time. It is
required for the realization of short response times and minimal jitter. The
disadvantage of preemptive scheduling is the higher dynamic overhead for context
switching and data consistency assurance. To guarantee mutually exclusive access to
resources, and to avoid blocking, ERCOS uses a variant of the priority ceiling

222 CHAPTER 10 REAL-TIME OPERATING SYSTEMS

protocol [Sha90] (discussed in Section 11.3.3). A process that accesses a shared
resource elevates its priority to the priority ceiling of the resource until it releases the
resource again. It is thus not possible to preempt a task that holds a needed resource.

10.5.3 Interprocess Communication

Interprocess communication in ERCOS is realized by state messages. During task
activation, the input messages are copied to the private input data structure of the
task. After completion of the task, the output data structure is copied back into the
global data area. To improve the performance of the interprocess communication, a
number of optimizations are performed off-line:

(i) The in-line expansion of send and receive operations makes it possible to
implement send and receive operations as simple assignment statements.

(ii) If a static analysis of the source code precludes the possibility of access
conflicts to the data, no copy of a message must be made.

(iii) Batching of message send and receive operations of a schedule sequence: the a
priori knowledge of the execution order of tasks within a schedule sequence can
be used to reduce the number of message copies in a schedule sequence.

10.5.4 Error Detection

ERCOS provides many mechanisms for run-time error detection, such as:

(i) A deadline checking service is provided by the operating system to detect late
system responses, and to make it possible for an exception handler to react to
such a failure.

The occurrence of interrupts originating from the controlled object is
continuously monitored. After each interrupt occurrence, the interrupt line is
disabled for the duration of the minimum interarrival period.

(iii) The actual number of active instances of a task is monitored by the operating
system at run time and compared with the permitted maximum number of
concurrently active instances of a task that has been determined off-line.

(iv) A watchdog process generates a life-sign message with a known period so that
an outside observer is continuously informed of the proper operation of a node.

(ii)

10.5.5 Off-line Software Tools

An extensive off-line software development tool (OLT) supports the design and
implementation of application code for the ERCOS run-time system. The OLT
performs a static source code analysis of the application code and generates the
necessary interface code to link the application to the run-time kernel. An overview
on the OLT’s functionality is given in the following:

(i) Support for object-based software construction and software reuse:

The OLT provides the functions to structure the application software according
to the ERCOS real-time object model. This object model supports

CHAPTER 10 REAL-TIME OPERATING SYSTEMS 223

autonomously active objects and concurrent activity within and between
objects. To support the reuse of software in widely varying contexts, the OLT
generates the necessary code to ensure data consistency in the presence of
preemptive scheduling. Object interfaces are checked for consistency,
completeness and conformance to visibility rules.

The ERCOS kernel configured and generated automatically by the OLT for each
individual application. All the necessary RAM and ROM data structures are
reserved by the OLT based on the static source code analysis. This avoids the
effort for dynamic memory handling and ensures that only a minimal amount of
memory is configured.

(iii) Optimization of operating system functions:

Based on the static analysis of the source code, the OLT selects optimized
implementations for operating system functions. For example, the static source
code analyzer detects the situations where concurrency conflicts cannot arise
during execution. In typical applications, it reduces the number of message
copy operations and the required memory amount for message copies by an
order of magnitude [Po196c]. To guarantee mutual exclusive access to resources,
the OLT decides which implementation is most efficient in a given context. If
it is known by static analysis that no resource conflict can arise, then, the OLT
decides that no actions have to be taken at run-time to ensure mutual exclusive
access.

(ii) Automatic operating system configuration:

POINTS TO REMEMBER

• The worst-case administrative overhead (WCAO) of every operating system call
of a real-time operating system must be known a priori, so that the temporal
properties of the behavior of the complete host can be determined analytically.

The a priori designed task schedule of a TT system must consider the required
precedence and mutual exclusion relationships between the tasks such that an
explicit coordination of the tasks by the operating system at run time is not
necessary.

The simplest application program interface (API) is the API of a time-triggered
S-task.

The coupling between the application program and the operating system
increases with the number and variety of the operating system calls.

The determination of the worst case execution time (WCET) of a C-task is not a
local issue of the C-task, but a system issue.

Explicit synchronization of tasks by semaphore operations can be very costly if
the protected region of data is small. Implicit synchronization by properly
designed static schedules is orders of magnitudes cheaper.

•

•

•

•

•

224 CHAPTER 10 REAL-TIME OPERATING SYSTEMS

Data exchanges at the CNI should be protected by non-blocking protocols
because it can be difficult to exercise back-pressure flow control on the sender.

The precision of the clock synchronization that is implemented at the operating
system level is significantly better than the precision that is achievable at the
application level.

A real-time operating system must support error detection in the temporal
domain and in the value domain.

The ERCOS operating system uses the a priori information about the
application to improve the efficiency and to increase the robustness of the
software.

BIBLIOGRAPHIC NOTES

Many of the standard textbooks on operating systems, such as "Distributed Operating
Systems" by Tanenbaum [Tan95], "Distributed Operating Systems" by Goscinski
[Gos9 13, or "Operating Systems" by Stallings [Stal95] contain sections on real-time
operating systems. The most recent research contributions on real-time operating
systems can be found in the annual Proceedings of the IEEE Real-Time System
Symposium. The ERCOS operating system was presented at the SAE World
Congress in Detroit [Po196a] and the Real-Time System Symposium in Washington
in 1996 [Po196c].

REVIEW QUESTIONS AND PROBLEMS

10.1

10.2

10.3

10.4

Why is it not recommended to use standard workstation operating systems
for hard real-time applications?

Explain the task management of a time-triggered system versus that of an
event-triggered operating system.

Compare the determination of the WCET of an S-tasks with that of a C-
task, considering the WCAO of the operating system.

Consider a real-time system consisting of 100 concurrent tasks, running on
5 different priority levels. How large is the worst-case number of active task
control blocks if the tasks are (a) S-tasks, and (b) C-tasks.

10.5 Identify all system calls that have to be provided at the API of an event-
triggered operating system that supports preemptive C-tasks.

10.6 Discuss the interdependence between software portability and API
complexity.

10.7 What is the difference between interprocess communication based on state
messages and interprocess communication based on common memory?

10.8 A critical region of data can be protected either by properly designed static
schedules or by semaphore operations. Compare these two alternatives from
the point of view of performance.

•

•

•

•

CHAPTER 10 REAL-TIME OPERATING SYSTEMS 225

10.9

10.10

10.11

10.12

10.13

10.14

10.15

What are the difficulties in implementing back-pressure flow control at the
communication network interface?

How is data integrity at the reader achieved in the NBW protocol?

Estimate the worst-case delay of a reader when using the NBW protocol.
What are the critical parameters?

List the time services that are required by a real-time application.

Identify some methods that can be implemented in the operating system for
detecting errors in the temporal domain.

How can the operating system support the detection of transient errors in the
value domain?

Estimate an upper bound for the number of instruction that must be
executed to implement a semaphore operation WAIT (including the
necessary queue management).

This page intentionally left blank.

Chapter 11

Real-Time Scheduling

OVERVIEW

Many thousands of research papers have been written about how to schedule a set of
tasks in a system with a limited amount of resources such that all tasks will meet
their deadlines. This chapter tries to summarize some important results that are
relevant to the designer of real-time systems. The chapter starts by introducing the
notion of a schedulability test to determine whether a given task set is schedulable or
not. It distinguishes between a sufficient, an exact, and a necessary schedulability
test, A scheduling algorithm is effective if it will find a schedule whenever there is a
solution. The adversary argument shows that in the general case it is not possible to
design an effective on-line scheduling algorithm.

Section 11.3 covers the topic of dynamic scheduling. It starts with looking at the
problem of scheduling a set of independent tasks by the rate-monotonic algorithm.
Next, the problem of scheduling a set of dependent tasks is investigated. After the
kernelized monitor, the priority-ceiling protocol is discussed and a schedulability test
for the priority ceiling protocol is presented. Finally, the scheduling problem in
distributed systems is touched.

The final section elaborates on static scheduling. The concept of the schedule period
is introduced and an example of a simple search tree that covers a schedule period is
given. A heuristic algorithm has to examine the search tree to find a feasible
schedule. If it finds one, the solution can be considered a constructive schedulability
test. The flexibility of static schedules can be increased by introducing a periodic
server task to service sporadic requests. Finally, the topic of mode changes to adapt
the temporal control structure even further is discussed.

228 CHAPTER 11 REAL-TIME SCHEDULING

11.1 THE SCHEDULING PROBLEM

A hard real-time system must execute a set of concurrent real-time tasks in such a
way that all time-critical tasks meet their specified deadlines. Every task needs
computational and data resources to proceed. The scheduling problem is concerned
with the allocation of these resources to satisfy all timing requirements.

11.1.1 Classification of Scheduling Algorithms

The following diagram presents a taxonomy of real-time scheduling algorithms
[Chen87].

Figure 11.1: Taxonomy of real-time scheduling algorithms.

Dynamic versus Static Scheduling: A scheduler is called dynamic (or on- line)
if it makes its scheduling decisions at run time, selecting one out of the current set of
ready tasks (see Section 10.1). Dynamic schedulers are flexible and adapt to an
evolving task scenario. They consider only the current task requests. The run-time
effort involved in finding a schedule can be substantial.

A scheduler is called static (or pre-run-time) if it makes its scheduling decisions at
compile time. It generates a dispatching table for the run-time dispatcher off line. For
this purpose it needs complete prior knowledge about the task-set characteristics,
e.g., maximum execution times, precedence constraints, mutual exclusion
constraints, and deadlines. The dispatching table contains all information the
dispatcher needs at run time to decide at every point of a discrete time-base which task
is to be scheduled next. The run-time overhead of the dispatcher is small.

Preemptive versus Nonpreemptive Scheduling: In preemptive scheduling,
the currently executing task may be preempted, i.e., interrupted, if a more urgent task
requests service.

In nonpreemptive scheduling, the currently executing task will not be interrupted
until it decides on its own to release the allocated resources–normally after
completion. The shortest guaranteed responsiveness in single processor systems
based on nonpreemptive scheduling is the sum of the longest and the shortest task
execution time. Nonpreemptive scheduling is reasonable in a task scenario where

CHAPTER 11 REAL-TIME SCHEDULING 229

many short tasks (compared to the time it takes for a context switch) must be
executed.

Centralized versus Distributed Scheduling: In a dynamic distributed real-
time system, it is possible to make all scheduling decisions at one central site or to
devise cooperative distributed algorithms for the solution of the scheduling problem.
The central scheduler in a distributed system is a critical point of failure. Because it
requires up-to-date information on the load situations in all nodes, it can also
contribute to a communication bottleneck.

11.1 .2 Schedulabi l i ty Test

A test that determines whether a set of ready tasks can be scheduled such that each
task meets its deadline is called a schedulability test. We distinguish between exact,

necessary and sufficient schedulability tests (Figure 11.2).

A scheduler is called optimal if it will always find a schedule provided an exact

schedulability test indicates the existence of such a schedule. Carey and Johnson
[Gar75] have shown that in nearly all cases of task dependency, even if there is only
one common resource, the complexity of an exact schedulability test algorithm
belongs to the class of NP-complete problems and is thus computationally
intractable. Sufficient schedulability test algorithms can be simpler at the expense of
giving a negative result for some task sets that are in fact schedulable. A task set is
definitely not schedulable if a necessary schedulability test gives a negative result. If
a necessary schedulability test gives a positive result, there is still a probability that
the task set may not be schedulable.

Figure 11.2: Necessary and sufficient schedulability test.

11.2 THE ADVERSARY ARGUMENT

The task request time is the point in time when a request for a task execution is
made. Based on the request times, it is useful to distinguish between two different
task types: periodic and sporadic tasks. This distinction is important from the point
of view of schedulability.

If we start with an initial request, all future request times of a periodic task are known
a priori by adding multiples of the known period to the initial request time. Let us
assume that there is a task set { Ti} of periodic tasks with periods pi , deadline interval
d

i
and execution time c

i
. The deadline interval is the difference befween the deadline

If the sufficient schedulability
test is positive, these tasks are

definitely schedulable

If the necessary schedulability
test is negative, these tasks are

definitely not schedulable

230 CHAPTER 11 REAL-TIME SCHEDULING

of a task and the task request time, i.e., the time when a task becomes ready for
execution. We call the difference d

i
- c

i
the laxity l

i
of a task. It is sufficient to

examine schedules of length of the least common multiples of the periods of these
tasks, the schedule period, to determine schedulability. A necessary schedulability test
for a set of periodic tasks states that the sum of the utilization factors:

must be less or equal to n, where n is the number of available processors. This is
evident because the utilization factor of task Ti, µ

i,
denotes the percentage of time the

task Ti requires service from a processor.

The request times of sporadic tasks are not known a priori. To be schedulable, there
must be a minimum interval between any two request times of sporadic tasks.
Otherwise, the necessary schedulability test introduced above will fail. If there is no
constraint on the request times of task activations, the task is called an aperiodic task.

Let us assume that a real-time computer system contains a dynamic scheduler with
full knowledge of the past but without any knowledge about future request times of
tasks. It determines which task is to be scheduled next on the basis of the current
requests. In such a scenario an exact schedulability test is impossible, because we do
not have enough information about future request times. Schedulability of the current
task set may depend on when a sporadic task will request service in the future. We
therefore need a new definition of optimality of a dynamic scheduler. A dynamic on-
line scheduler is called optimal, if it can find a schedule whenever a clairvoyant
scheduler, i.e., a scheduler with complete knowledge of the future request times, can
find a schedule.

Figure 11.3: The adversary argument.

The adversary argument [Mok83,p.41] states that, in general, it is not possible to
construct an optimal totally on-line dynamic scheduler if there are mutual exclusion
constraints between a periodic and a sporadic task. The proof of the adversary
argument is relatively simple,

Consider two mutually exclusive tasks, task T1 is periodic and the other task T2 is
sporadic, with the parameters given in Figure 11.3. The necessary schedulability test
introduced above is satisfied, because

CHAPTER 11 REAL-TIME SCHEDULING 231

µ = 2/4 + 1/4 = 3/4 ≤ 1.

Whenever the periodic task is executing, the adversary requests service for the
sporadic task. Due to the mutual exclusion constraint, the sporadic task must wait
until the periodic task is finished. Since the sporadic task has a laxity of 0, it will
miss its deadline.

The clairvoyant scheduler knows all the future request times of the sporadic task and
at first schedules the sporadic task, and thereafter the periodic task in the gap between
two sporadic task activations (Figure 11.3).

The adversary argument demonstrates how valuable information on the future
behavior of tasks is for solving the scheduling problem. If the on-line scheduler does
not have any further knowledge about the request times of the sporadic task, the
scheduling problem is not solvable, although the processor capacity is more than
sufficient for the given task scenario. The design of predictable hard real-time systems
is simplified if regularity assumptions about the future scheduling requests can be
made. This is the case in cyclic systems that restrain the points in time at which
external requests are recognized by the computing system.

1 1.3 DYNAMIC SCHEDULING

After the occurrence of a significant event, a dynamic scheduling algorithm
determines on line which task out of the ready task set must be serviced next. The
algorithms differ in the assumptions about the complexity of the task model and the
future task behavior.

11.3.1 Scheduling Independent Tasks

The classic algorithm for scheduling a set of periodic independent hard real-time tasks
in a system with a single CPU, the rate monotonic algorithm, was published in
1973 by [Liu73].

Rate Monotonic Algorithm: The rate monotonic algorithm is a dynamic
preemptive algorithm based on static task priorities. It makes the following
assumptions about the task set:

(i) The requests for all tasks of the task set {Ti } for which hard deadlines exist, are
periodic.

(ii) All tasks are independent of each other. There exists no precedence constraints
or mutual exclusion constraints between any pair of tasks.

(iii) The deadline interval of every task Ti is equal to its period p
i
.

(iv) The required maximum computation time of each task c
i

is known a priori and
is constant.

(v) The time required for context switching can be ignored.

(vi) The sum of the utilization factors µ of the n tasks is given by

232 CHAPTER 11 REAL-TIME SCHEDULING

The term n(21/n - 1) approaches ln 2, i.e., about 0.7, as n goes to infinity.

The rate monotonic algorithm assigns static priorities based on the task periods. The
task with the shortest period gets the highest static priority, and the task with the
longest period gets the lowest static priority. At run time, the dispatcher selects the
task request with the highest static priority.
If all the assumptions are satisfied, the rate monotonic algorithm guarantees that all
tasks will meet their deadline. The algorithm is optimal for single processor systems.
The proof of this algorithm is based on the analysis of the behavior of the task set at
the critical instant. A critical instant of a task is the moment at which the request of
this task will have the longest response time. For the task system as a whole, the
critical instant occurs when requests for all tasks are made simultaneously. Starting
with the highest priority task, we can show that all tasks will meet their deadlines,
even in the case of the critical instant. In a second phase of the proof it must be
shown that any scenario can be handled if the critical instant scenario can be handled
For the details of the proof refer to [Liu73].

It is also shown that assumption (vi) above can be relaxed in case the task periods are
multiples of the period of the highest priority task. In this case the utilization factor
µ of the n tasks,

can approach the theoretical maximum of unity in a single processor system.

In recent years, the rate monotonic theory has been extended to handle a set of tasks
where the deadline interval can be different from the period [Bur96].

Earliest-Deadline-First (EDF) Algorithm: This algorithm is an optimal
dynamic preemptive algorithm in single processor systems which is based on
dynamic priorities. The assumptions (i) to (v) of the rate monotonic algorithm must
hold. The processor utilization µ can go up to 1, even when the task periods are not
multiples of the smallest period. After any significant event, the task with the
earliest deadline is assigned the highest dynamic priority. The dispatcher operates in
the same way as the dispatcher for the rate monotonic algorithm.

Least-Laxity (LL) Algorithm: In single processor systems, the least laxity
algorithm is another optimal algorithm. It makes the same assumptions as the EDF
algorithm. At any scheduling decision point the task with the shortest laxity l, i.e.,
the difference between the deadline interval d and the computation time c

is assigned the highest dynamic priority.

In multiprocessor systems, neither the earliest-deadline-first nor the least-laxity
algorithm is optimal, although the least-laxity algorithm can handle task scenarios
which the earliest-deadline-first algorithm cannot handle.

d - c = l

CHAPTER 11 REAL-TIME SCHEDULING 233

11.3.2 Scheduling Dependent Tasks

From a practical point of view, results on how to the schedule tasks with precedence
and mutual exclusion constraints are much more important than the analysis of the
independent task model. Normally, the concurrently executing tasks must exchange
information and access common data resources to cooperate in the achievement of the
overall system objective. The observation of given precedence and mutual exclusion
constraints is thus rather the norm than the exception in distributed real-time
systems.

The general problem of deciding whether it is possible to schedule a set of processes
that use semaphores only to enforce mutual exclusion is an NP complete problem. It
is prohibitively expensive to look for an optimal schedule for a set of dependent
tasks. The computational resources required for solving the dynamic scheduling
problem compete with those needed for executing the real-time tasks. The more
resources are spent on scheduling, the fewer resources remain available to perform the
actual work.

There are three possible ways out of this dilemma:

(i)

(ii)

Providing extra resources such that simpler sufficient schedulability tests and
algorithms can be applied.

Dividing the scheduling problem into two parts such that one part can be solved
off-line at compile time and only the second (simpler) part must be solved at
run time.

(iii) Introducing restricting assumptions concerning the regularity of the task set.

The second and third alternatives point towards a more static solution of the
scheduling problem.

Figure 11.4: Scheduling dependent tasks
(a) without, (b) with forbidden regions.

The Kernelized Monitor: Let us assume a set of short critical sections such that
the longest critical section of this set is smaller than a given duration q. The
kernelized monitor algorithm [Mok83,p.57] allocates the processor time in
uninterruptible quanta of this duration q, assuming that all critical sections can be

234 CHAPTER 11 REAL-TIME SCHEDULING

started and completed within this single uninterruptible time quantum. The only
difference between this new scheduling problem and the rate monotonic scheduling
problem is that a process may be interrupted only after it has been given an integral
number of time quanta q. This little difference is already sufficient to cause problems.

Example: Let us assume two tasks, T1 and T2 with the parameters given in Figure
11.4. The second part of T2, T22 is mutually exclusive to T1. Assume that the
preemption time quantum has a length of two units. Then, the EDF scheduler will
schedule the tasks according to Figure 11.4 (a). At time 4 the only task that is in the
ready set is T22, so the EDF scheduler schedules T22 which cannot be preempted by
T1 within the next two time units. At time 5 a conflict occurs. T22 has not finished
yet, but T1 that is strictly periodic and mutually exclusive to T22, must be executed
immediately because it has a latency of zero. A wiser scheduling algorithm could
solve this problem by designing the schedule depicted in Figure 11.4 (b). The critical
section of the second task, Task T22, is not allowed to start during the two timeslots
before the second execution of T1. This second schedule meets all deadlines and
respects all mutual exclusion constraints.

The region that must be reserved to guarantee that the future request by T1 can be
serviced on-time is called a forbidden region. During compile time, all forbidden
regions must be determined and passed to the dispatcher so that the dispatcher will
not schedule any unwanted critical sections in the forbidden region.

11.3.3 The Priority Ceiling Protocol

The priority ceiling protocol [Sha90] is used to schedule a set of periodic tasks that
have exclusive access to common resources protected by semaphores. These common
resources, e.g., common data structures, can be utilized to realize an interprocess
communication.

If a set of 3 tasks T1,T2, and T3 (T1 has the highest priority and T3 has the lowest
priority), is scheduled with the rate-monotonic algorithm, and T1 and T3 require
exclusive access to a common resource protected by the semaphore S, it can happen
that the low priority task T3 has exclusive access to the common resource when the
service of the high priority task T1 is requested. T1 must wait until T3 finishes its
critical section and releases the semaphore S. If during this time interval T2 requests
service, this service will be granted and T2, the medium priority task, effectively
delays T3 and consequently T1, the high priority task. This phenomenon is called
priority inversion.

It has been proposed to elevate the priority of the low priority task T3 during its
blocking critical section to the high priority of the blocked task T1, and thereby
eliminate the possibility that the medium priority task T2 interferes during the
critical section of the low priority task. This is the basic idea of the priority

inheritance protocol. However, an analysis shows that this protocol can lead to
chained blocking and deadlocks. To solve these problems, the priority ceiling

protocol was developed by [Sha90].

CHAPTER 11 REAL-TIME SCHEDULING 235

Event Action

1 T3 begins execution.

2 T3 locks S3.

3
4

5

T2 is started and preempts T3.

T2 becomes blocked when trying to access S3 since the priority of T2 is not
higher than the priority celing of the locked S3. T3 resumes the execution

of its critical section at the inherited priority of T2.

T1 is initiated an preempts T3.
T1 locks the semaphore S1. The priority of T1 is higher than the priority

ceiling of all locked semaphores.
T1 unlocks semaphore S1.
T1 finishes its execution. T3 contintues with the inherited priority of T2.

T3 locks semaphore S2.
T3 unlocks S2.

8
9

T3 unlocks S3 and returns to its lowest priority. At this point T2 can lock

10

S2.

11

T2 locks S3.12

13

14

T3 completes.

15

16

T2 ounlocks S3.

T2 unlocks S2.

T2 completes. T3 resumes its operation.

Figure 11.5: The priority ceiling protocol (example taken from [Sha90]).

T1: . ., P(S1), . ., V(S1), . . . (highest priority)
T2: . ., P(S2), . ., P(S3), . ., V(S3), . ., V(S2), . . (middle priority)
T3: . ., P(S3), . ., P(S2), . ., V(S2), . ., V(S3), . . (lowest priority)

Command Sequence

6

7

236 CHAPTER 11 REAL-TIME SCHEDULING

The priority ceiling of a semaphore is defined as the priority of the highest priority
task that may lock this semaphore. A task T is allowed to enter a critical section
only if its assigned priority is higher than the priority ceilings of all semaphores
currently locked by tasks other than T. Task T runs at its assigned priority unless it
is in a critical section and blocks higher priority tasks. In this case it inherits the
highest priority of the tasks it blocks. When it exits the critical section it resumes
the priority it had at the point of entry into the critical section.

The example of Figure 11.5, taken from [Sha90], illustrates the operation of the
priority ceiling protocol. A system of 3 tasks, T1 (highest priority), T2 (middle
priority) and T3 (lowest priority) compete for three critical regions protected by the
three semaphores S1, S2 and S3.

Schedulability Test for the Priority Ceiling Protocol: The following
sufficient schedulability test for the priority ceiling protocol has been given by
[Sha90]. Assume a set of periodic tasks, {Ti} with periods pi and computation times
ci. We denote the worst-case blocking time of a task ti by lower priority tasks by Bi.

The set of n periodic tasks {Ti} can be scheduled, if the following set of inequalities
holds:

In these inequalities the effect of preemptions by higher priority tasks is considered in
the first i terms (in analogy to the rate monotonic algorithm), whereas the worst case
blocking time due to all lower priority tasks is represented in the term Bi/pi. The
blocking term Bi/pi, which can become very significant if a task with a short period
(i.e., small pi) is blocked for a significant fraction of its time, effectively reduces the
CPU utilization of the task system. In case this first sufficient schedulability test
fails, more complex sufficient tests can be found in [Sha90]. The priority ceiling
protocol is a good example of a predictable, but non-deterministic scheduling
protocol.

11.3.4 Dynamic Scheduling in Distributed Systems

It is difficult to guarantee tight deadlines by dynamic scheduling techniques in a
single processor multi-tasking system if mutual exclusion and precedence constraints
among the tasks must be considered. The situation is more complex in a distributed
system, where non-preemptive access to the communication medium must be
controlled. At present, work is ongoing to extend the rate-monotonic theory to
distributed systems. Tindell [Tin95] analyzes distributed systems that use the CAN
bus as the communication channel and establishes analytical upper bounds to the
communication delays that are encountered by a set of periodic messages. These
results are then integrated with the results of the node-local task scheduling to arrive
at the worst-case execution time of distributed real-time transactions. One difficult
problem is the control of transaction jitter.

CHAPTER 11 REAL-TIME SCHEDULING 237

The problem of investigating the real-time temporal performance in a best-effort
distributed system is a current research topic [Mos94]. The critical issue in the
evaluation of the timeliness of a distributed best-effort architecture by probabilistic
models concerns the assumptions on the input distribution. Rare event occurrences in
the environment, e.g., a lightning stroke into an electric power grid, will cause a
highly correlated input load on the system (e.g., an alarm shower) that is very
difficult to model adequately. Even an extended observation of a real-life system is
not conclusive, because these rare events, by definition, cannot be observed
frequently.

This section has only presented a coarse overview of recent results in the field of
dynamic scheduling. For a more detailed discussion, the reader is referred to an
excellent survey by [Ram96].

11.4 STATIC SCHEDULING

In static or pre-runtime scheduling, a feasible schedule of a set of tasks is calculated
off line. The schedule must guarantee all deadlines, considering the resource,
precedence, and synchronization requirements of all tasks. The construction of such a
schedule can be considered as a constructive sufficient schedulability test. The
precedence relations between the tasks executing in the different nodes can be depicted
in the form of a precedence graph (Figure 11.6).

Figure 11.6: Example of a precedence graph of a distributed task set [Foh94].

11.4.1

Static scheduling is based on strong regularity assumptions about the points in time
when future service requests will be honored. Although the occurrence of external
events that demand service is not under the control of the computer system, the
recurring points in time when these events will be serviced can be established a priori

by selecting an appropriate sampling rate for each class of events (see also Section
9.3). During system design, it must be ascertained that the sum of the maximum

Static Scheduling Viewed as a Search

238 CHAPTER 11 REAL-TIME SCHEDULING

delay times until a request is recognized by the system plus the maximum transaction
response time is smaller than the specified service deadline.

The Role of Time: A static schedule is a periodic time-triggered schedule. The
timeline is partitioned into a sequence of basic granules, the basic cycle time. There
is only one interrupt in the system: a periodic clock interrupt denoting the start of a
new basic granule. In a distributed system, this clock interrupt must be globally
synchronized to a precision that is much better than the duration of a basic granule.
Every transaction is periodic, its period being a multiple of the basic granule. The
least common multiple of all transaction periods is the schedule period. At compile
time, the scheduling decision for every point of the schedule period must be
determined and stored in a dispatcher table for the operating system. At run time, the
preplanned decision is executed by the dispatcher after every clock interrupt.

Static scheduling can be applied to a single processor, to a multiple-processor, or to a
distributed system. In addition to preplanning the resource usage in all nodes, the
access to the communication medium must also be preplanned in distributed systems.
It is known that finding an optimal schedule in a distributed system is in almost all
realistic scenarios an NP-complete problem, i.e., computationally intractable. But
even a non-optimal solution is sufficient if it meets all deadlines.

The Search Tree: The solution to the scheduling problem can be seen as finding a
path, a feasible schedule, in a search tree by applying a search strategy. An example
of a simple search tree for the precedence graph of Figure 11.6 is shown in
Figure 11.7. Every level of the search tree corresponds to one unit of time. The
depth of the search tree corresponds to the period of the schedule. The search starts
with an empty schedule at the root node of this tree. The outward edges of a node
point to the possible alternatives that exist at this point of the search. A path from
the root node to a particular node at level n records the sequence of scheduling
decisions that have been made up to time-point n. Each path to a leaf node describes a
complete schedule. It is the goal of the search to find a complete schedule that
observes all precedence and mutual exclusion constraints, and which completes before
the deadline. From Figure 11.7, it can be seen that the right branch of the search tree
will lead to a shorter overall execution time than the left branches.

Figure 11.7: A search tree for the precedence graph of figure 11.6.

A Heuristic Function Guiding the Search: To improve the efficiency of the
search, it is necessary to guide the search by some heuristic function. Such a

CHAPTER 11 REAL-TIME SCHEDULING 239

heuristic function can be composed of two terms, the actual cost of the path
encountered until the present node in the search tree, i.e., the present point in the
schedule, and the estimated cost until a goal node. Fohler [Foh94] proposes a
heuristic function that estimates the time needed to complete the precedence graph,
called TUR (time until response). A lower bound of the TUR can be derived by
summing up the maximum execution times of all tasks and message exchanges
between the current task and the last task in the precedence graph, assuming true
parallelism constrained by the competition for CPU resources of tasks that reside at
the same node. If this necessary TUR is not short enough to complete the precedence
graph on time, all the branches from the current node can be pruned and the search
must backtrack.

11.4.2 Increasing the Flexibility in Static Schedules

One of the weaknesses of static scheduling is the assumption of strictly periodic
tasks. Although the majority of tasks in hard real-time applications is periodic, there
are also sporadic requests for service that have hard deadline requirements. An example
of such a request is an emergency stop of a machine. Hopefully it will never be
requested–the mean time between emergency stops can be very long. However, if an
emergency stop is requested, it must be serviced within a small specified time
interval.

The following three methods increase the flexibility of static scheduling:

(i) The transformation of sporadic requests into periodic requests,

(ii) The introduction of a sporadic server task, and

(iii) The execution of mode changes.

Transformation of a Sporadic Request to a Periodic Request: While the
future request times of a periodic task are known a priori, only the minimum
interarrival time of a sporadic task is known in advance. The actual points in time
when a sporadic task must be serviced are not known ahead of the request event. This
limited information makes it difficult to schedule a sporadic request before run time.
The most demanding sporadic requests are those that have a short response time, i.e.,
the corresponding service task has a low latency.

It is possible to find solutions to the scheduling problem if an independent sporadic
task has a laxity. One such solution, proposed by Mok [Mok83,p.44], is the
replacement of a sporadic task T by a pseudo-ueriodic task T' as seen in Table 11.1.

Table 11.1: Parameters of the pseudo-periodic task.

This transformation guarantees that the sporadic task will always meet its deadline if
the pseudo-periodic task can be scheduled. The pseudo-periodic task can be scheduled

240 CHAPTER 11 REAL-TIME SCHEDULING

statically. A sporadic task with a short latency will continuously demand a
substantial fraction of the processing resources to guarantee its deadline, although it
might request service very infrequently.

Sporadic Server Task: To reduce the large resource requirements of a pseudo-
periodic task with a long interarrival time (period) but a short latency, Sprunt et al.
[Spr89] have proposed the introduction of a periodic server task for the service of
sporadic requests. Whenever a sporadic request arrives during the period of the server
task, it will be serviced with the high priority of the server task. The service of a
sporadic request exhausts the execution time of the server. The execution time will be
replenished after the period of the server. Thus, the server task preserves its execution
time until it is needed by a sporadic request. The sporadic server task is scheduled
dynamically in response to the sporadic request event.

Mode Changes: During the operation of most real-time applications a number of
different operating modes can be distinguished. Consider the example of a flight
control system in an airplane. When a plane is taxiing on the ground a different set of
services is required than when the plane is flying. Better resource utilization can be
realized if only those tasks that are needed in a particular operating mode must be
scheduled. If the system leaves one operating mode and enters another, a
corresponding change of schedules must take place.

During system design, one must identify all possible operating and emergency
modes. For each mode, a static schedule that will meet all deadlines is calculated off
line. Mode changes are analyzed and the appropriate mode change schedules are
developed. Whenever a mode change is requested at run time the applicable mode
change schedule will be activated immediately. The topic of mode changes is an area
of active research, see, e.g., [Foh92].

We conclude this chapter with a comment by Xu and Parnas [Xu91, p.134]

For satisfying timing constraints in hard real-time systems, predictability of the

systems behavior is the most important concern; pre-run-time scheduling is often the

only practical means of providing predictability in a complex system.

POINTS TO REMEMBER

• A scheduler is called dynamic (or on-line) if it makes its scheduling decisions at
run time, selecting one out of the current set of ready tasks. A scheduler is called
static (or pre-run-time) if it makes its scheduling decisions at compile time. It
generates a dispatching table for the run-time dispatcher off line.

In preemptive scheduling the currently executing task may be preempted, i.e.,
interrupted, if a more urgent task requests service. In nonpreemptive scheduling,
the currently executing task will not be interrupted until it decides on its own to
release the allocated resources--normally after completion.

A test that determines whether a set of ready tasks can be scheduled so that each
task meets its deadline is called a schedulability test. We distinguish between
exact, necessary and sufficient schedulability tests. In nearly all cases of task

•

•

CHAPTER 11 REAL-TIME SCHEDULING 241

dependency, even if there is only one common resource, the complexity of an
exact schedulability test algorithm belongs to the class of NP-complete
problems, and is thus computationally intractable.

The moment when a request for a task execution is made is called the task

request time. Starting with an initial request, all future request times of a
periodic task are known a priori by adding multiples of the known period to the
initial request time.

While the future request times of a periodic task are known a priori, only the
minimum interarrival time of a sporadic task is known in advance. The actual
points in time when a sporadic task must be serviced are not known ahead of the
request event.

If there is no constraint on the request times of task activations, the task is called
an aperiodic task.

The adversary argument states that, in general, it is not possible to construct an
optimal totally on-line dynamic scheduler if there are mutual exclusion
constraints between a periodic and a sporadic task. The adversary argument
accentuates the value of a priori information about the behavior in the future.

The rate monotonic algorithm is a dynamic preemptive scheduling algorithm
based on static task priorities. It assumes a set of periodic and independent tasks
with deadlines equal to their periods.

The Earliest-Deadline-First (EDF) algorithm is a dynamic preemptive scheduling
algorithm based on dynamic task priorities. The task with the earliest deadline is
assigned the highest dynamic priority.

The Least-Laxity (LL) algorithm is a dynamic preemptive scheduling algorithm
based on dynamic task priorities. The task with the shortest laxity is assigned
the highest dynamic priority.

During compile time, all forbidden regions must be determined, and passed to the
dispatcher so that the dispatcher will not schedule any unwanted critical sections
in the forbidden region.

The priority ceiling protocol is used to schedule a set of periodic tasks that have
exclusive access to common resources protected by semaphores.

The priority ceiling of a semaphore is defined as the priority of the highest
priority task that may lock this semaphore.

According to the priority ceiling protocol, a task T is allowed to enter a critical
section only if its assigned priority is higher than the priority ceilings of all
semaphores currently locked by tasks other than T. Task T runs at its assigned
priority unless it is in a critical section and blocks higher priority tasks. In this
case, it inherits the highest priority of the tasks it blocks. When it exits the
critical section, it resumes the priority it had at the point of entry into the
critical section.

The priority ceiling protocol is a good example of a predictable, but non-

deterministic scheduling protocol.

•

•

•

•

•

•

•

•

•

•

•

•

242 CHAPTER 11 REAL-TIME SCHEDULING

• The critical issue in best-effort scheduling concerns the assumptions about the
input distribution. Rare event occurrences in the environment will cause a highly
correlated input load on the system that is difficult to model adequately. Even an
extended observation of a real-life system is not conclusive, because these rare
events, by definition, cannot be observed frequently.

In static or pre-run-time scheduling, a feasible schedule of a set of tasks that
guarantees a l l deadl ines , consider ing the resource, precedence, and
synchronization requirements of all tasks, is calculated off line. The construction
of such a schedule can be considered as a constructive sufficient schedulability
test.

A static schedule is a periodic time-triggered schedule that is repeated after the
schedule period. The timeline is partitioned into a sequence of basic granules, the
basic cycle time. There is only one interrupt in the system: a periodic clock
interrupt denoting the start of a new basic granule.

One of the weaknesses of static scheduling is the assumption of strictly periodic
tasks. Although the majority of tasks in hard real-time applications is periodic,
there are also sporadic requests for service that have hard deadline requirements.

The following three techniques increase the flexibility in static scheduling: the
transformation of a sporadic task to a pseudo-periodic task, the introduction of
periodic server tasks, and mode changes.

•

•

•

•

BIBLIOGRAPHIC NOTES

Scheduling is one of the best researched topics in the field of real-time computing.
Starting with the seminal works of Serlin [Ser72] in 1972 and of Liu and Layland
[Liu73] in 1973 on scheduling of independent tasks, hundreds of papers on scheduling
have been published each year. In 1975 Garey and Johnson published their important
paper "Complexity Results for Multiprocessor Scheduling under Resource
Constraints" [Gar75] that contains fundamental results about the complexity of the
scheduling problem. Mok presented the adversary argument and the kernerlized
monitor as part of his PhD work [Mok83, Mok84]. The problem of scheduling real-
time tasks in multiprocessor systems has been analyzed by [Ram89]. A major step
forward was the development of the priority ceiling protocol for scheduling dependent
tasks [Sha90]. The development of static schedules has been investigated by Fohler
in his PhD thesis [Foh94, Foh95]. The literature contains a number of good survey
papers on scheduling, such as the recent contributions by Burns and Wellings [Bur96]
and Ramamitham [Ram96].

REVIEW QUESTIONS AND PROBLEMS

11.1 Give a taxonomy of scheduling algorithms.

11.2 Develop some necessary schedulability tests for scheduling a set of tasks on
a single processor system.

CHAPTER 11 REAL-TIME SCHEDULING 243

11.3

11.4

What are the differences between periodic tasks, sporadic tasks, and aperiodic

tasks?

Given the following set of independent periodic tasks, where the deadline
interval is equal to the period: {T1(5,8); T2(2,9); T3(4,13)}; (notation: task
name(CPU time, period)).

(a) Calculate the laxities of these tasks.

(b) Determine, using a necessary schedulability test, if this task set is
schedulable on a single processor system.

(c) Schedule this task set on a two processor system with the LL algorithm.

Given the following set of independent periodic tasks, where the deadline
interval is equal to the period: {T1(5,8); T2(1,9); T3(1,5)}; (notation: task
name(CPU time, period)).

(a) Why is this task set not schedulable with the rate monotonic algorithm
on a single processor system?

(b) Schedule this task set on a single processor system with the EDF
algorithm.

Why is it not possible to design, in general, an optimal dynamic scheduler?

What is a forbidden region, and why is it needed?

Assume that the task set of Figure 11.5 is executed without the priority
ceiling protocol. At what moment will a deadlock occur? Can this deadlock
be resolved by priority inheritance?

Given the task set of Figure 11.5, determine the point where the priority
ceiling protocol prevents a task from entering a critical section.

Discuss the schedulability test of the priority ceiling protocol. What is the
effect of blocking on the processor utilization?

What are the problems with dynamic scheduling in distributed systems?

Discuss the issue of temporal performance in best-effort distributed system.

What is the role of time in static scheduling?

How can the flexibility in static scheduling be increased?

11.5

11.6

11.7

11.8

11.9

11.10

11.11

11.12

11.13

11.14

This page intentionally left blank.

Chapter 12

Validation

OVERVIEW

Validation deals with the question "Is this system fit for its purpose?". Before a
safety critical system can be put into operation, convincing evidence must be
gathered from independent sources to ensure that the system is trustworthy.
Combining this evidence to support the conclusion "yes, this system is safe to
deploy" is a subjective process, which must be supported by judicious arguments
taking the results of rational analysis and experimental observations into
consideration wherever possible.

This chapter starts with a discussion of what constitutes a convincing safety case. It
is argued that the properties of the architecture have a decisive influence on the
structure of the safety case. Section 12.2 investigates the state of the art of formal
methods and their contribution to the validation of ultradependable real-time systems.
The use of a semi-formal notation during requirements capture and in the
documentation increases the accuracy and helps to avoid the ambiguity of natural
language. Fully automatic verification environments that cover the complete system
from the high-level specification to the hardware are beyond the current state of the
art.

Section 12.3 is devoted to the topic of testing real-time systems. The challenge in
testing real-time systems is to find a layout that does not influence the temporal
behavior of the system. After presenting some techniques that lead to a testable
design, the question of test data selection is raised. Finally, we pose the question:
"What do we know about the dependability if the system has been operating correctly
during the testing phase?".

Section 12.4 focuses on dependability analysis. After an explanation of the terms
hazard and risk, the techniques of Fault-Tree Analysis and Failure-Mode-And-Effect
Analysis are outlined.

246 CHAPTER 12 VALIDATION

1 2.1 BUILDING A CONVINCING SAFETY CASE

A safety case is a combination of a sound set of arguments supported by analytical
and experimental evidence concerning the safety of a given design. The safety case
must convince an independent certification authority that the system under
consideration is safe to deploy. What exactly constitutes a proper safety case of a
safety-critical computer system is a subject of intense debate.

12.1.1 Outline of the Safety Case

The safety case must argue why it is extremely unlikely that a single fault will cause
a catastrophic failure. The arguments that are included in the safety case will have a
major influence on design decisions at later stages of the project. Hence, the outline
of the safety case should be planned during the early stages of a project.

Computer systems can fail for external and internal reasons. External reasons are
related to the operational environment (e.g., mechanical stress, external
electromagnetic fields, temperature), and to the system specification. The two main
internal reasons for failure are:

(i) The computer hardware fails because of a random physical fault. Section 6.4
presented a number of techniques how to detect and handle random hardware
faults by redundancy. The effectiveness of these fault-tolerance mechanisms
must be demonstrated as part of the safety case, e.g., by fault injection (Section
12.4).

The design, which consists of the software and hardware, contains residual
design faults. The elimination of the design faults and the validation that a
design (software and hardware) is fit for purpose is one of the great challenges of
the scientific and engineering community. No single validation technology can
provide the required evidence that a computer system will meet the ultra-high
dependability requirement (Section 1.4.2).

A safety case will therefore combine the evidence from independent sources to
convince the certification authority that the system is safe to deploy. A disciplined
software-development process with inspections and design reviews reduces the
number of design faults that are introduced into the software during initial
development [Fag86]. Experimental evidence from testing, which in itself is
infeasible to demonstrate the safety of the software in the ultra-dependable region,
must be combined with structural arguments about the partitioning of the system in
autonomous error-containment regions. The credibility can be further augmented by
presenting results from formal analysis of critical properties and the experienced
dependability of previous generations of similar systems. Experimental data about
field-failure rates of critical components form the input to reliability models of the
architecture to demonstrate that the system will mask random component failures
with the required high probability. Finally, diverse mechanisms play an important
role in reducing the probability of common-mode design failures.

(ii)

CHAPTER 12 VALIDATION 247

12.1.2 Properties of the Architecture

It is a common requirement of a safety critical application that no single fault, which
is capable of causing a catastrophic failure, may exist in the whole system. This
implies that for a fail-safe application every critical error of the computer must be
detected within such a short latency that the application can be forced into the safe
state before the consequences of the error affect the system behavior. In a fail-

operational application, a safe system service must be provided even after a single
fault in any one of the components has occurred.

Error-Containment Regions: At the architectural level, it must be demonstrated
that every single fault can only affect a defined error-containment region and will be
detected at the boundaries of this error-containment region. The partitioning of the
system into independent error-containment regions is thus of grave concern.

Experience has shown that there are a number of sensitive points in a design that can
lead to a common-mode failure of all nodes within a distributed system:

(i) A single source of time, such as a central clock.

(ii) A babbling node that disrupts the communication among the correct nodes in a
bus system.

(iii) A single fault in the power supply or in the grounding system.

(iv) A single design error that is replicated when the same hardware or system
software is used in all nodes.

Example: Assume an architecture as depicted in Figure 12.1, where four nodes are
connected by a replicated bus. If the communication controller implements an event-
triggered protocol, then a single faulty host can corrupt the communication among
all correct nodes by sending high-priority event messages on both buses at arbitrary
points in time. If the communication controller implements the ARINC 629
protocol (Section 7.5.5), then the protocol has enough information to detect such a
misbehavior of the host. However, if the ARINC 629 controller is itself faulty and
generates babbling messages, then the communication among the correct nodes will
still be disrupted. If the communication controller implements the TTP protocol,
then the independent Bus Guardian (Figure 8.2) will detect a babbling fault of the
controller, and prevent disruption of the communication.

Figure 12.1: Real-time communication system.

248 CHAPTER 12 VALIDATION

Composability: Composability is another important architectural property, and
helps in designing a convincing safety case (see also Section 2.4.3). Assume that the
nodes of a distributed system can be partitioned into two groups: one group of nodes
that is involved in the implementation of safety critical functions, and another group
of nodes that is not involved (Figure 2.7). If it can be shown, at the architectural
level, that no error in any one of the not-involved nodes can affect the proper
operation of the nodes that implement the safety critical function, then, it is possible
to exclude the not-involved nodes from further consideration during the safety case
analysis.

12.2 FORMAL METHODS

By the term formal methods, we mean the use of mathematical and logical techniques
to express, investigate, and analyze the specification, design, documentation, and
behavior of computer hardware and software. In highly ambitious projects, formal
methods are applied to prove formally that a piece of software implements the
specification correctly.

12.2.1 Formal Methods in the Real World

Any formal investigation of a real-world phenomenon requires the following steps to
be taken:

(i) Conceptual model building: Building a conceptual model of a real-world
application has been discussed in detail in Section 4.1. This important informal

first step leads to a reduced natural language representation of the real-world
phenomenon that is the subject of investigation. All assumptions, omissions,
or misconceptions that are introduced in this first step will remain in the model,
and limit the validity of the conclusions derived from the model (see also
Section 4.1.1 on assumption coverage).

Model formalization: In this second step, the natural language representation of
the problem is transformed, and expressed in a formal specification language
with precise syntax and semantics. Different degrees of rigor can be
distinguished, as discussed in the following section.

(iii) Analysis of the formal model: In the third step, the problem is formally
analyzed. In computer systems the analysis methods are based on discrete
mathematics and logic. In other engineering disciplines, the analysis methods
are based on different branches of mathematics, e.g., the use of differential
equations to analyze a control problem.

(iv) Interpretation of the results: In the final step, the results of the analysis must be
interpreted and applied to the real-world.

Only step (iii) out of these four steps can be mechanized. Steps (i), (ii), and (iv) will
always require human involvement and human intuition, and are thus as fallible as
any other human activity.

(ii)

CHAPTER 12 VALIDATION 249

An ideal and complete verification environment takes the specification, expressed in a
formally defined specification language, and the implementation, written in a
formally defined implementation language, as inputs, and establishes mechanically
the consistency between specification and implementation. In a second step it must
be ensured that all assumptions and architectural mechanisms of the target machine
(e.g., the properties and timing of the instruction set of the hardware) are consistent
with the model of computation that is defined by the implementation language.
Finally, the correctness of the verification environment itself must be established.
Such an ideal and complete verification environment has yet to be built.

12.2.2 Classif ication of Formal Methods

Rushby [Rus93] classifies the use of formal methods in computer science according
to the increasing rigor into the following three levels:

(i) Use of concepts and notation from discrete mathematics. At this level, the
sometimes ambiguous natural language statements about requirements and
specification of a system are replaced by the symbols and conventions from
discrete mathematics and logic, e.g., set theory, relations, and functions. The
reasoning about the completeness and consistency of the specification follows a
semi-formal manual style, as it is performed in many branches of mathematics.

Use of formalized specification languages with some mechanical support tools.

At this level, a formal specification language with a fixed syntax is introduced
that allows the mechanical analysis of some properties of the problems
expressed in the specification language. At level (ii), it is not possible to
generate complete proofs mechanically.

(iii) Use of fully formalized specification languages with comprehensive support
environments, including mechanized theorem proving or proof checking. At
this level, a precisely defined specification language with a direct interpretation
in logic is supplied, and a set of support tools is provided to allow the
mechanical analysis of specifications expressed in the formal specification
language.

(ii)

12.2.3

Level (i) Methods: The compact mathematical notation introduced at this level
forces the designer to clearly state the requirements and assumptions without the
ambiguity of natural language. Since familiarity with the basic notions of set theory
and logic is part of an engineering education, the disciplined use of level (i) methods
will improve the communication within a project team and within an engineering
organization, and enrich the quality of documentation. Parnas [Par90,Par92] advocates
the use of the semiformal notation at this level to improve the quali ty of
documentation of real-time software. Since most of the serious faults are introduced
early in the lifecycle, the benefits of the level (i) methods at the early phases of
requirements capture and architecture design are most pronounced. Rushby [Rus93,
p.39] sees the following benefits from using level (i) methods early in the lifecycle:

Benefits from the Application of Formal Methods

250 CHAPTER 12 VALIDATION

(i) The need for effective and precise communication between the software engineer
and the engineers from other disciplines is greatest at an early stage, when the
interdependencies between the mechanical control system and the computer
system are specified.

The familiar concepts of discrete mathematics (e.g., set, relation) provide a
repertoire of mental building blocks that are precise, yet abstract. The use of a
precise notation at the early stages of the project helps to avoid ambiguities and
misunderstandings.

(iii) Some simple mechanical analysis of the specification can lead to the detection
of inconsistencies and of omission faults, e.g., that symbols have not been
defined or variables have not been initialized.

(iv) The reviews at the early stages of the lifecycle are more effective if the
requirements are expressed in a precise notation than if ambiguous natural
language is used.

(v) The difficulty to express vague ideas and immature concepts in a semiformal
notation helps to reveal problem domains that need further investigation.

Level (ii) Methods: Level (ii) methods are a mixed blessing. They introduce a
rigid formalism that is cumbersome to use, without offering the benefit of
mechanical proof generation. Many of the specification languages that focus on the
formal reasoning about the temporal properties of real-time programs (see, e.g., the
different mathematically based methods for the design of real-time systems presented
in the book [Mat96]) are based at this level. Level (ii) formal methods are an
important intermediate step on the way to provide a fully automated verification
environment. They are interesting from the point of view of research.

Level (iii) Methods: The full benefits of formal methods are only realized at this
level. However, the available systems for verification are not complete in the sense
that they cover the entire system from the high level specification to the hardware
architecture. They introduce an intermediate level of abstraction that is above the
functionality of the hardware. Nevertheless, the use of such a system [Rus93a] for the
rigorous analysis of some critical functions of a distributed real-time system, e.g.,
the correctness of the clock synchronization, can uncover subtle design faults and lead
to valuable insights.

To summarize, we quote Rushby [Rus93, p.87]:

Formal methods can provide important evidence for consideration in certification, but

they can no more "prove" that an artifact of signijicant logical complexity is fit for

its purpose than a finite-element calculation can "prove" that a wing span will do its

job. Certification must consider multiple sources of evidence, and ultimately rests on

informed engineering judgment and experience.

(ii)

12.3 TESTING

During testing, a computer system is exercised with valued inputs with the goal of
determining whether the system provides all specified functions, and whether all

CHAPTER 12 VALIDATION 251

residual design errors have been removed. The latter goal cannot be fully achieved by
testing. In real-time systems, the functional as well as temporal behavior of the
system must be tested. In this section, we focus on the peculiarities of testing
distributed real-time systems.

12.3.1 The Probe Effect

Observability of the outputs of the subsystem under test and controllability of the
test inputs are at the core of any testing activity. In non-real time systems, the
observability and controllability are provided by test- and debug monitors that halt
the program flow at a testpoint and give the tester the opportunity to monitor and
change program variables. In real-time systems, such a procedure is not suitable for
the following two reasons:

(i) The temporal delay introduced at the testpoint modifies the temporal behavior of
the system in such a manner that existing errors can be hidden, and new errors
can be introduced.

In a distributed system, there are many loci of control. The halting of one
control path introduces a temporal distortion in the coordinated control flow that
can lead to new errors.

The modification of the behavior of the object under test by the introduction of a test
probe is called the probe effect. The challenge in testing distributed real-time system
lies in designing a test environment that is free of the probe effect [Sch93].

(ii)

Figure 12.2: Test driver in a distributed system.

Distributed systems that contain a broadcast communication channel (bus) have the
advantage that all messages on the real-time bus can be observed by a non-intrusive
test monitor. If the sensors and actuators are connected by a field bus, then the I/O
information of a node can also be monitored without the probe effect. The
observability of the input/output messages of a node is thus given.

In distributed systems, controllability can be achieved by a test driver that generates
the messages of the node environment on the real-time bus and on the field bus for
the node under test (Figure 12.2). If the system is time-triggered, then, any scenario
that has been observed in the environment can be reproduced by the test driver
deterministically on the sparse time-base.

252 CHAPTER 12 VALIDATION

12.3.2 Design for Testability

By design for testability, we mean the design of a system structure and the provision
of mechanisms that facilitate the testing of the system [Wil83]. The following
techniques improve the testability:

(i) Partitioning the system into composable subsystems so that each subsystem
can be tested in isolation, and no unintended side-effects will occur during
system integration. This topic has been discussed extensively throughout this
text, particularly in Sections 2.4 and 7.4.1.

Establishment of a static temporal control structure so that the temporal control
structure is independent of the input data. It is then possible to test the temporal
control structure in isolation.

(iii) Reducing the size of the input space by introducing a sparse time-base of proper
granularity. The granularity of this time-base should be small enough to
accommodate the application at hand but should not be any smaller. The
smaller the granularity of the sparse time-base, the larger the potential input
space. The test coverage, i.e., the fraction of the total input space that is tested,
can be increased by decreasing the input space or by increasing the number of
test cases.

(iv) Output of the h-state of a node in an h-state message at the point in time when
the node is in the ground state. This measure improves the observability of the
internal state of the node.

(v) Provision of replica determinism in the software, which guarantees that the
same outputs will be produced if the same input messages are applied to a node.

Because of their deterministic properties, time-triggered systems are easier to test than
event-triggered systems.

12.3.3 Test Data Selection

During the test phase, only a tiny fraction of the potential input space of a software
system can be exercised. The challenge for the tester is to find an effective and
representative set of test-data that will uncover a high percentage of the unknown
faults. In the literature on testing [The95], many test data selection criteria have been
proposed. In this section, we focus on three test data selection criteria that are unique
to real-time systems.

Peak Load: A hard real-time system must provide the specified timely service under
all conditions covered by the load- and fault-hypothesis, i.e., also under peak load.
Rare-event scenarios often generate peak-load activity. The peak-load scenario puts
extreme stress on the software and should be tested extensively. The behavior of the
system in above-peak load situations must also be tested. If peak load activity is
handled correctly, the normal load case will take care of itself.

Worst-case Execution Time (WCET): To determine the WCET of a task
experimentally, the task source code can be analyzed to generate a test data set that is
biased towards the worst-case execution time.

(ii)

CHAPTER 12 VALIDATION 253

Fault-Tolerance Mechanisms: Testing the correctness of the fault-tolerance
mechanism is difficult, because faults are not part of the normal input domain.
Mechanisms must be provided that can activate the faults during the test phase. For
example, software- or hardware-implemented fault injection can be used to test the
correctness of the fault-tolerance mechanisms (see the following section).

12.3.4

Is it possible to accept a software-intensive control system for a safety critical
application on the basis of evidence gathered during the testing phase? Section 1.4.2
states that safety critical systems must meet the ultra-high dependability requirement
of less than one critical failure in 10

9
hours, i.e., an MTTF of about 100 000 years

of operation. In [Lit95, p.479] Littlewood and Strigini raise the question: "How long
must a single system operate without a failure to be able to conclude that the stated
reliability objective has been reached?". Referring to arguments from Bayesian
statistics, they conclude that if no prior belief is brought to the problem, then a
failure-free operation in the same order of magnitude as the MTTF is needed to infer
that the system meets the ultra-high dependability requirements. Butler and Finelly
[But93] reach a similar conclusion about the infeasibility of quantifying the
reliability of life critical real-time software by statistical methods.

If 100 000 identical systems are observed in the field, then the necessary operational
hours accumulate within a single year. The wide deployment of computers in safety-
critical mass products (e.g., automobiles) offers the prospect that a statistical data
base that can be used for the certification of future critical systems can be built. For
example, an automotive company might install a new real-time network in hundred
thousands of cars in a non safety-critical applications to observe the system during
billions of operating hours before installing the system in a safety-critical
application. If every single failure is scrutinized, it is possible to get a sufficient
statistical base for reasoning about the probability of a critical failure in a fault-
tolerant system.

What can be Inferred from "Perfect Working"?

12.4 FAULT INJECTION

Fault injection is the intentional activation of faults by hardware or software means
to be able to observe the system operation under fault conditions. During a fault-
injection experiment, the target system is exposed to two types of inputs: the
injected faults and the input data. The faults can be seen as another type of input that
activate the fault-management mechanisms.

12.4.1 Why Fault Injection?

Careful testing and debugging of the fault-management mechanisms are necessary
because a notable number of system failures is caused by errors in the fault-
management mechanisms. A fault in a system manifests itself either as an error (see
Section 6.1.2) or as an incorrect trigger (see Section 1.5.5).

254 CHAPTER 12 VALIDATION

Fault injection serves two purposes during the evaluation of a dependable system:

(i) Testing and Debugging: During normal operation, faults are rare events that
occur only infrequently. Because a fault-tolerance mechanism requires the
occurrence of a fault for its activation, it is very cumbersome to test and debug
the operation of the fault-tolerance mechanisms without artificial fault
injection.

(ii) Dependability Forecasting: This is used to get experimental data about the
likely dependability of a fault-tolerant system. For this second purpose, the
types and distribution of the expected faults in the envisioned operational
environment must be known. Only then is it possible to carry out a realistic
physical simulation of this environment in the laboratory.

Table 12.1 compares these two different purposes of fault injection.

Table 12.1: Fault injection for testing and debugging

It is possible to inject faults at the physical level of the hardware (physical fault

injection) or into the state of the computation (software implemented fault-injection).

12.4.2 Physical Fault Injection

During physical fault-injection the target hardware is subjected to adverse physical
phenomena that interfere with the correct operation of the computer hardware. In the
following section, we describe a set of hardware fault-injections experiments that
have been carried out on the MARS (Maintainable Real-time System) architecture in
the context of the ESPRIT Basic Research Project Predictably Dependable

Computing Systems (PDCS) [Kar95].

The objective of the MARS fault-injection experiments was to determine the error-

detection coverage of the MARS nodes experimentally. Two replica-determinate
nodes receive identical inputs and should produce the same result. One of the nodes is
subjected to fault-injections (the FI-node), the other node serves as a reference node (a
golden node). As long as the consequences of the faults are detected within the FI-
node, and the FI-node turns itself off, or the FI-node produces a detectably incorrect
result message at the correct point in time, the error has been classified as detected. If
the FI-node produces a result message different from the result message of the golden
node without any error indication, a fail-silence violation has been observed.

versus dependability forecasting [Avr92].

CHAPTER 12 VALIDATION 255

Table 12.2: Characteristics of different physical fault-injection techniques.

Injected Faults: Three different fault-injection techniques were chosen at three
different sites. At Chalmers University in Goeteborg, the CPU chip was bombarded
with α particles until the system failed. At LAAS in Toulouse, the system was
subjected to pin-level fault-injection, forcing an equi-potential line on the board into
a defined state at a precise moment of time. At the Technische Universität Wien, the
whole board was subjected to Electromagnetic Interference (EMI) radiation according
to the IEC standard IEC 801-4.

The potential interference of electromagnetic radiation with the operation of an
embedded computer system is a serious issue. Since such an interference is infrequent
and sensitive to specific geometry parameters between the emitter and the device
under consideration, the interference is difficult to reproduce. Statistics from the
aviation industry suggest that EMI is a hazard that cannot be neglected.

Example: To reduce the risk of EMI with the operation of the electronic equipment
onboard an aircraft, the operation of electronic equipment during critical flight
maneuvers is restricted [Per96]. For the same reason, patients with a heart pacemaker
are not recommended to pass by a metal detector at an airport.

Table 12.2 gives a comparison of the characteristics of the diverse fault-injection
techniques.

Figure 12.3: The hardware under test.

256 CHAPTER 12 VALIDATION

The Hardware under Test: Figure 12.3 gives an overview of the hardware under
test. The hardware consisted of two major subsystems, a communication-control unit
implementing the time-triggered communication protocol, and an application unit
(host) for implementing the application. The Bus Guardian (BG) protected the bus
from babbling nodes. A more detailed description of the hardware can be found in
[Rei95].

The replica-determinate MARS operating system described in [Rei95] was
implemented on the application unit and the communication unit. The application
software consisted of a control program that implemented a typical cyclic real-time
application. The following error detection mechanisms were implemented in the node
under test:

(i) Hardware: standard mechanisms onboard the 68070 CPU such as: illegal
instruction, illegal address; special mechanisms such as: bus guardian, FIFO
overflow, and power supply monitor.

(ii) System Software: compiler generated run-time assertions, timing checks to
check the WCET of the real-time tasks.

(iii) Application Software: double execution, triple execution (two dynamic, one
static test in-between), end-to-end CRC.

Most of the error-detection mechanisms could be deactivated to learn about the
effectiveness of each mechanism by comparing test runs with and without a particular
mechanism. A more detailed description of the error-detection mechanisms can be
found in [Rei95].

Figure 12.4: Experiment setup.

Experiment Setup: Figure 12.4 shows the experiment setup. A sequence of input
messages was produced by a data generator node. These input messages were received
by the two nodes, the node under test and the golden node. The result messages of
these two nodes were compared by the comparator node. The nodes were connected to
a gateway that downloaded the core-images from a workstation. The results of the
experiments were transmitted to the workstation for later analysis.

CHAPTER 12 VALIDATION 257

Results: Many different test runs, each one consisting of 2000 to 10000
experiments, were carried out with differing combinations of error detection
techniques enabled. The results of the experiments can be summarized as follows:

(i) With all error detection mechanisms enabled, no fail-silence violation was
observed in any of the experiments.

(ii) The end-to-end error detection mechanisms and the double execution of tasks
were needed in experiments with every one of the three fault-injection methods
if error-detection coverage of > 99 % must be achieved.

(iii) In the experiment that used heavy-ion radiation, a triple execution was needed to
eliminate all coverage violations. The triple execution consisted of a test-run
with known outputs between the two replicated executions of the application
task. This test run was not needed in the EMI experiments and the pin-level
fault injection.

(iv) The bus guardian unit was needed in all three experiments if a coverage of >
99% must be achieved. It eliminated the most critical failure of a node, the
babbling idiots.

A more detailed discussion of the results can be found in [Kar95].

12.4.3 Software-Implemented Fault Inject ion

In software-implemented fault injection, errors are seeded into the memory of the
computer by software techniques. These seeded errors mimic the effects of hardware
faults or design faults in the software. The errors can be seeded either randomly or
according to some preset strategy to activate specific fault-management tasks. A
distinction is made between an injection of faults in the i-state or in the h-state (see
Section 4.2.2). While an error in the h-state corresponds to a data error, an error in
the i-state can mimic a control error as well as a data error.

Software implemented fault injection has a number of potential advantages over
physical fault injection:

(i) Predictability: The space (memory cell) where and the moment when a fault is
injected is fixed by the fault-injection program. It is possible to reproduce every
injected fault in the value domain and in the temporal domain.

(ii) Reachability: It is possible to reach the inner registers of large VLSI chips.
Pin-level fault injection is limited to the external pins of a chip.

(iii) Less Effort than Physical Fault Injection: The experiments can be carried out
with software tools without any need to modify the hardware.

A number of software fault-injection environments are discussed in the literature,
e.g., FIAT [Seg88], FERRARI [Kan95], and DOCTOR [Ros93]. One of the key
issues is whether software implemented fault-injection leads to results that are
comparable to physical fault injections.

Fuchs [Fuc96] conducted an extensive set of experiments to answer this question
experimentally by comparing the characteristics of software implemented fault-
injection versus physical fault injection. He performed software-implemented fault-

258 CHAPTER 12 VALIDATION

injection on the experimental setup described in Section 12.3.2 and came to the
following conclusions:

(i) The results from software fault-injection experiments with the bit-flip fault
model (the fault changes a single bit) in the h-state indicate that error-detection
coverage is similar to that of the hardware fault-injection experiments.

The application software error detection is higher for the software-implemented
fault injection than for the three physical fault-injection experiments. Most of
the faults injected by pin-level fault injection and EMI fault injection are
detected by the hardware and the system software, and do not propagate to the
application level.

(iii) If the application level error detection mechanisms are turned off, software fault
injection generates a higher number of coverage violations than EMI or pin
level fault injections for the single execution configuration.

In summary, Fuchs [Fuc96] concluded from his experiments that software-
implemented fault-injection with the simple bit-flip model is capable to produce a
similar error set as the physical techniques of EMI and pin level fault injection.
However, heavy-ion radiation is more stressful and requires a more malicious fault
model than the single bit-flip model.

(ii)

12.5 DEPENDABILITY ANALYSIS

A safety-critical system must be carefully analyzed before it is put into operation to
reduce the probability that an accident will occur. For example, the probability of a
catastrophic failure must be less than 10-9/hour in many applications in the
transportation sectors (see Section 1.4.2). The damage is a pecuniary measure for the
loss in an accident, e.g., death, illness, injury, loss of property, or environmental
harm. Undesirable conditions that have the potential to cause or contribute to an
accident are called hazards. A hazard is thus a state that can lead to an accident, given
certain environmental conditions. Hazards have a severity and a probability. The
severity is related to the worst potential damage that can result from the accident
associated with the hazard. The severity of hazards is often classified in a severity
class. The product of hazard severity and hazard probability is called risk. The goal of
dependability analysis and safety engineering is to identify hazards, and to propose
measures that eliminate or at least reduce the hazard or reduce the probability of a
hazard turning into a catastrophe, i.e., to minimize the risk [Lev95]. According to the
IEC Standard 604 for programmable medical equipment [IEC96], a risk originating
from a particular hazard should be reduced to a level which is "as low as reasonably
practical (ALARP)". This is a rather imprecise statement that must be interpreted
with good engineering judgment. An example of a risk minimization technique is the
implementation of an independent safety monitor that detects a hazardous state of the
controlled object and forces the controlled object into a safe state (see the example of
Section 6.6.2).

CHAPTER 12 VALIDATION 259

12.5.1 Fault Tree Analysis

A fault tree provides graphical insight into the possible combinations of component
failures that can lead to a particular system failure. Fault-tree analysis is an accepted
methodology to identify hazards and to increase the safety of complex systems.

The fault-tree analysis begins at the system level with the identification of the
undesirable failure event (the top event of the fault tree). It then investigates the
subsystem failure conditions that can lead to this top event and proceeds down the
tree until the analysis stops at a basic failure, usually a component failure mode
(events in ellipses). The parts of a fault-tree that are still undeveloped are identified by
the diamond symbol. The failure conditions can be connected by the AND or the OR
symbol. AND connectors typically model redundancy or safety mechanisms.

Example: Figure 12.5 depicts the fault tree of an electric iron. The undesirable top
event occurs if the user of the electric iron receives an electric shock. Two conditions
must be satisfied for this event to happen: the metal parts of the iron must be under
high voltage (hazardous state) and the user must be in direct or indirect contact with
the metal parts, i.e., the user either touches the metal directly or touches a wet piece
of cloth that conducts the electricity. The metal parts of the iron will be under high
voltage if the insulation of a wire that touches the metal inside the iron is defect and
the ground-current monitor that is supposed to detect the hazardous state (the metal
parts are under high voltage) is defect.

Figure 12.5: Fault tree for an electric iron.

Fault trees can be formally analyzed with mathematical techniques. Given the
probability of basic component failures, the probability of the top event of a static
fault-tree can be calculated by standard combinatorial approaches.

Warm and cold spares, shared pools of resources, and sequence dependencies in which
the order of the failure occurrence determines the state of the system, require more
elaborate modeling techniques. A fault tree that cannot by analyzed by combinatorial
approaches is called a dynamic fault tree [Pul96]. A dynamic fault tree is transformed
into a Markov chain that can be solved by numerical techniques. There are many

260 CHAPTER 12 VALIDATION

excellent computer programs available that assist the design engineer in evaluating
the reliability and safety of a given design, e.g., UltraSAN [Cou91], or SHARPE
[Sah95].

12.5.2 Failure Mode and Effect Analysis (FMEA)

Failure Mode and Effect Analysis (FMEA) is a technique for systematically analyzing
the effects of possible failure modes of components within a system to detect weak
spots of the design, and to prevent system failures from occurring. The original
FMEA requires a team of experienced engineers to identify all possible failure modes
of each component and to investigate the consequences of every failure on the service
of the system at the system/user interface. The failure modes are entered into a
standardized work-sheet as sketched in Figure 12.6.

Figure 12.6 Worksheet for an FMEA.

A number of software tools have been developed to support the FMEA. The first
efforts attempted to reduce the bookkeeping burden by introducing customized
spreadsheet programs. Recent efforts have been directed towards assisting the
reasoning process [Be192] and to provide a system wide FMEA simulation [Mon96].

The FMEA is complementary to the Fault-Tree Analysis discussed in the previous
section. While the Fault-Tree Analysis starts from the undesirable top event, and
proceeds down to the component failures that are the cause of this system failure, the
FMEA starts with the components and investigates the effects of the component
failure on the system functions.

12.5.3 Software Reliability Growth

Since it is impossible to determine the reliability of a software-intensive product in
the ultra-high dependability region quantitatively by analyzing the product per se (by
testing or formal analysis of the software), evidence regarding the anticipated
reliability of the product is gathered from another source: the software development
process. It is assumed that a disciplined and structured development process with
semi-formal reviews and inspections of the intermediate documents (requirements
specification, architecture design, detailed design, program code, and test plan) reduces
the probability that design errors are introduced into the product during its
development. The ARINC RTCA/DO-178 B [ARI92] document "Software
Considerations in Airborne Systems and Equipment Certification", and the emerging
IEC Standard IEC-1508 part 5 [IEC95] on software in safety related systems follow
this route.

In a disciplined development process, every error that is detected at a later stage of
development (e.g., during integration testing) is recorded and analyzed to determine in

CHAPTER 12 VALIDATION 261

which earlier phase the error was made and what caused the error. This data (e.g., the
MTTF between system failures) is gathered during the later phases of the
development cycle and during the operation of the software to predict the reliability
growth of the software as the system is debugged. Elaborate models for the prediction
of the reliability growth of software have been published [Lit95].

In ultra-high dependability applications, reliability-growth models are of little help.
The system must be reliable to a degree that the number of error-data points available
is insufficient to support a statistical analysis.

POINTS TO REMEMBER

• A safety case is a combination of a sound set of arguments supported by
analytical and experimental evidence concerning the safety of a given design.

A safety case will combine the evidence from independent sources to convince
the certification authority that the system is safe to deploy. Examples of sources
of evidence are: disciplined development process, results from inspection and
testing, formal verification of critical properties, experience with similar
systems, diverse designs.

The term formal methods we denotes the use of mathematical and logical
techniques to express, investigate, and analyze the specification, design,
documentation, and behavior of computer hardware and software.

The important informal first step in applying formal methods concerns
constructing a conceptual model of the application. This model serves as the
basis for the formal model. All assumptions, omissions or misconceptions that
are introduced in this first step will remain in the model and limit the validity of
the conclusions derived from the model

The compact mathematical notation resulting from the use of discrete
mathematics at the early phases of a project forces the user and designer to
clearly state the requirements and assumptions without the ambiguity of natural
language. This will improve the communication within an engineering
organization, lead to more precise requirements statement, and enrich the quality
of documentation.

The modification of the behavior of the object under test by introducing of a test
probe is called the probe effect. The challenge in testing distributed real-time
systems lies in designing of a test environment that is free of the probe effect.

Fault injection is the intentional activation of faults by hardware or software
means to be able to observe the system operation under fault conditions. During
a fault-injection experiment the target system is exposed to two types of inputs:
the injected faults and the input data.

Software-implemented fault-injection with the simple bit-flip model is capable
to produce a similar error set as the physical techniques of EMI and pin level
fault injection.

•

•

•

•

•

•

•

262 CHAPTER 12 VALIDATION

• A hazard is an undesirable condition that has the potential to cause or contribute
to an accident.

A hazard has a severity, denoting the worst-case damage of a potential accident,
and a probability. The product of hazard severity and hazard probability is called
risk.

A fault tree provides graphical insight into the possible combinations of
component failures that can lead to a particular system failure.

Failure Mode and Effect Analysis (FMEA) is a technique for systematically
analyzing the effects of possible failure modes of components within a system
to detect weak spots of the design and to prevent system failures from occurring.

Because it is impossible to determine the reliability of a software-intensive
product in the ultra-high dependability region quantitatively by analyzing the
product per se (by testing or formal analysis of the software), evidence about the
anticipated reliability of the product is gathered from another source: the
software development process.

•

•

•

•

BIBLIOGRAPHIC NOTES

The research report "Formal Methods and the Certification of Critical Systems"
[Rus93] by John Rushby is a seminal work on the role of formal methods in the
certification of safety-critical systems. Methodologies for the specification and
verification of assertions about real-time in higher-level programming languages have
been proposed by a number of authors. Haase [Haa81] extends Dijkstra's guarded
commands to reason about time. Jahanian and Mok introduce a formal logic (Real-
Time Logic, RTL) [Jah86] to analyze the timing properties of real-time systems.
Mathai presents a number of different formal methodologies in the book "Real-Time
Systems, Specification, Verification and Analysis" [Mat96].

In the book "Predictably Dependable Computing Systems" [Ran95] the issues of the
design and validation of ultradependable systems are investigated. The book contains
many references to the up-to-date literature in this field. An good treatment of the
topic of testing is given by Howden [How87]. The recent PhD thesis by Fuchs on
"Software-Implemented Fault Injection" gives an overview and literature survey of
this field. The book by Leveson "Safeware: System Safety and Computers" [Lev95]
discusses the prominent role of software in safety critical computer systems.
Babaoglu [Bab87] investigates the probability that a fault-tolerant system delivers a
correct output depending on diverse replication strategies. Recent advances on the
topics of fault-tree analysis and FMEA are documented in the annual Reliability and
Maintainability Symposium [RMS96]. A good overview of the tools and techniques
on reliability estimation is contained in [Gei91].

REVIEW QUESTIONS AND PR OB L E M S

12.1 What is a "safety case"?

CHAPTER 12 VALIDATION 263

12.2

12.3

12.4

What properties of the architecture support the design of a "safety case"?

List some causes for common-mode failures in a distributed system.

Discuss the different steps that must be taken to investigate a real-world
phenomenon by a formal method. Which one of these steps can be
formalized, which cannot?

In Section 12.2.2, three different levels of formal methods have been
introduced. Explain each one of these levels and discuss the costs and
benefits of applying formal methods at each one of these levels.

What is the "probe effect"?

How can the "testability" of a design be improved?

What is the role of testing during the certification of a ultra-dependable
system?

Which are the purposes of fault-injection experiments?

Compare the characteristics of hardware and software fault-injection methods.

Explain the notions of "risk" and "hazard".

Design a fault-tree for the brake system of an automobile.

12.5

12.6

12.7

12.8

12.9

12.10

12.11

12.12

This page intentionally left blank.

Chapter 13

System Design

OVERVIEW

This chapter on system design starts with a philosophical discussion on design in
general. In computer system design, the most important goal is controlling the
complexity of the solution by introducing structure. This introduction of structure
restricts the design phase and has a negative impact on the performance of the
system. In the context of real-time systems, these performance penalties must be
carefully evaluated.

The architecture design phase starts with analyzing the requirements. There are two
opposing views on how to proceed in this phase: (i) to complete an unbiased and
consistent capture of all requirements before starting the "real" design work, or (ii) to
learn about the requirements by starting a rapid prototype implementation of key
system functions at an early stage. In any case, the designer must get a deep insight
into all the different aspects of the problem domain before she/he can design the
application architecture. The crucial step is the development of the system structure,
the clustering of the functions into nearly decomposable subsystems of high internal
cohesion with simple external interfaces. In distributed systems, a complete node
forms such a subsystem of defined functionality. The node interfaces define the
boundaries of the error-containment regions.

Design is an iterative process. As more is learned about the problem domain, with
different design alternatives being explored, there is the need to start all over again
more often than once. At the end of the design phase the alternate solutions must be
evaluated and compared. Section 13.4 contains checklists that can assist the designer
in evaluating a design. After the architecture design is completed and frozen, the
detailed design and implementation of the node software can be performed by a
number of teams in parallel.

266 CHAPTER 13 SYSTEM DESIGN

13.1 THE DESIGN PROBLEM

Design is an inherently creative activity. There is a common core to design activities
in many diverse fields: building design, product design, and computer system design
are all closely related. The designer must find a solution that accommodates a variety
of seemingly conflicting goals to solve an often ill-specified design problem. At the
end, what differentiates a good design from a bad design is often liable to subjective
judgment.

Example: Consider the design of an automobile. An automobile is a complex mass
product that is composed of a number of sophisticated subsystems (e.g., engine,
transmission, chassis, etc.). Each of these subsystems itself contains hundreds of
different Components that must meet given constraints: functionality, efficiency,
geometrical form, weight, dependability, and minimal cost. All these components
must cooperate, and interact smoothly, to provide the transportation service and the
look and feel that the customer expects from the system "car".

13.1.1 Complexity

The phenomenal improvement in the price/performance ratio of computer hardware
over the past twenty years has led to a situation where the software costs and not the
hardware costs are limiting the application of computers in many domains. Software
costs are directly related to the complexity of designing, implementing, and testing a
large software system. The main effort of computer software design must be directed
towards controlling this complexity by conceptual integrity.

System complexity increases more than linearly with the number of elements and the
intensity of the interactions among elements, i.e., with the system size (see Section
2.3.2 and Chapter 4). The most successful approach to cope with the complexity of
large systems is the introduction of system structure: the definition of subsystems
with high inner connectivity in contrast to weak interactions among these
subsystems across small and stable interfaces [Cou85].

Two kinds of structuring of a computer system can be distinguished to reduce the
system complexity: horizontal versus vertical structuring.

(i) Horizontal Structuring: Horizontal structuring (or layering) is related to
the process of stepwise abstraction, of defining successive hierarchically-ordered
new layers that are reduced representations of the system. Many software-
engineering techniques (e.g., structured programming, virtual machines)
propose one or another form of horizontal structuring.

(ii) Vertical Structuring: Vertical structuring is related to the process of
partitioning a large system into a number of nearly independent subsystems
with well-specified interfaces among these subsystems so that these
subsystems can be validated in isolation of each other. In distributed real-time
systems clusters and nodes are the tangible units of partitioning.

CHAPTER 13 SYSTEM DESIGN 267

While in a central computer system, layering is the only effective technique to
combat complexity, the designer of a distributed computer system can take advantage
of both techniques. A large application can first be partitioned into nearly
decomposable subsystems of high inner connectivity and low external connectivity.
These subsystems will be mapped into clusters and nodes of the distributed system.
In a second step, each subsystem can be structured internally according to the layering
technique.

The major advantage of partitioning over layering is that the abstractions of
partitioned systems also hold in case of failures (see Section 6.3). While in a layered
system, it is very difficult to define clean error-containment regions, the partitions
(nodes and clusters) of a distributed system can be considered units of failures where
small and observable interfaces (the message interfaces) around these error-
containment regions facilitate the error detection and error containment.

13.1 .2

In the feasibility analysis, the organizational goals and the economic constraints of
an envisioned computer solution are outlined. If the evaluation at the end of the
feasibility phase results in a "go ahead" decision, then a project team is formed to
start the requirements analysis and the architecture design phase. There are two
opposing empirical views how to proceed in these first life cycle phases when
designing a large system:

(i) A disciplined sequential approach, where every life-cycle phase is thoroughly
completed and validated before the next one is started (Grand Design), and

(ii) A rapid-prototyping approach, where the implementation of a key part of the
solution is started before the requirements analysis has been completed (Rapid

Prototyping).

Grand Design: The rationale for the grand design is that a detailed and unbiased
specification of the complete problem (the "What?") must be available before a
particular solution (the "How?") is designed. The difficulty with grand design is that
there are no clear "stopping rules". The analysis and understanding of a large problem
is never complete and there are always good arguments for asking more questions
concerning the requirements before starting with the "real" design work. The
paraphrase "paralysis by analysis" has been coined to point to this danger.

Rapid Prototyping: The rationale for the rapid prototyping approach is that, by
investigating a particular solution at an early stage, a lot is learned about the problem
space. The difficulties met during the search for a concrete solution guide the designer
in asking the right questions about the requirements. The dilemma of rapid
prototyping is that ad hoc implementations are developed with great expense that do
not address all important aspects of the design problem. It is often necessary to
completely discard these first prototypes and to start all over

A Compromise: Both sides have valid arguments that suggest the following
compromise: In the architecture design phase a small number of key designers should

Grand Design versus Incremental Development

268 CHAPTER 13 SYSTEM DESIGN

try to get a good understanding of the architecture properties, leaving detailed issues
that affect only the internals of a subsystem open. Chapter 4 distinguished between
the relevant properties and the irrelevant details at the level of the system architecture.
If it is not clear how to solve a particular problem, then a preliminary prototype of
the most difficult part should be investigated with the explicit intent of discarding the
solution if the looked-for insight has been gained.

13.1.3 Legacy Systems

Nowadays there are only few large projects that can start on the "green lawn" with
complete freedom in the design of the architecture and the selection of software and
hardware. Most projects are extensions or redesigns of already existing systems, the
legacy systems. Furthermore, there is a strong tendency in industry to use "COTS"
(Commercial Off The Shelf) components to reduce the development time and the
cost. The integration of these "legacy systems" into a newly designed application is
an issue of major concern and difficulty.

In Section 4.3, we introduced the concept of a "resource controller" to connect
partitioned subsystems that use a differing syntactic structure and a differing coding
scheme for the presentation of the information. The integration of legacy systems
into a new architecture can be facilitated if wide use is made of these resource
controllers. Wherever possible, the interfaces between the legacy systems and the new
architecture should be free of control signals to eliminate the possibility of control-
error propagation from the legacy system into the new architecture.

13.1.4 Design Problems are Wicked

Some years ago, Peters [Pet79] in a paper about software design argued that software
design belongs to the set of "wicked" problems. Wicked problems are described by
the following characteristics:

(i) A wicked problem cannot be stated in a definite way, abstracted from its
environment. Whenever one tries to isolate a wicked problem from its
surroundings, the problem loses its peculiarity. Every wicked problem is
somehow unique, and cannot be treated in the abstract.

(ii) Wicked problems cannot be specified without having a solution in mind. The
distinction between specification ("what?") and implementation ("how?) is not
as easy as is often proclaimed.

(iii) Solutions to wicked problems have no stopping rule: for any given solution,
there is always a better solution. There are always good arguments to learn
more about the requirements to produce a better design.

(iv) Solutions to wicked problems cannot be right or wrong; they can only be
"better" or "worse".

(v) There is no definite test for the solution to a wicked problem: Whenever a test
is "successfully" passed, it is still possible that the solution will fail in some
other way.

CHAPTER 13 SYSTEM DESIGN 269

13.2 REQUIREMENTS ANALYSIS

Design is a creative holistic human activity that cannot be reduced to following a set
of rules out of a design rule book. Design is an art, supplemented by scientific
principles. It is therefore in vain to try to establish a complete set of design rules and
to develop a fully automated design environment. Design tools can assist a designer
in handling and representing the design information and can help in the analysis of
design problems. They can, however, never replace the designer.

At the start of the requirements phase the designer must

(i) Obtain a good insight and a deep understanding of the many aspects of the
application domain: functional, temporal, dependability, and, above all, the
economic constraints. Most often, economic constraints drive a project to a
much larger extent than realized by the designers. The understanding comes
from learning, experience, and from exploring the design space by analyzing
existing solutions and working on prototypical solutions.

Select a computer system architecture that matches the requirements of the
application domain. An appropriate architecture restricts the design space, and
leads the designer to ask the right questions, and to find elegant solutions to the
given design problems. The early selection of a computer system architecture is
contrary to the often proclaimed separation of the "what?" from the "how?"–a
separation that is unrealistic to maintain during the design of a large real-time
system. The analysis of the temporal behavior of a system is always closely
related to the implementation, the "how?", and cannot be postponed to a later
design phase.

(iii) Develop a set of project standards. This issue is discussed in the following
section.

(ii)

13.2.1 Developing Project Standards

The communication between the client and the designers, as well as within a design
team, is facilitated if all concerned parties agree to a common technical language. A
set of project standards defines such a common set of concepts. The following list of
topics is intended to serve as a check list for the most important project standards.

Information Representation: Distributed systems provide the opportunity to
hide peculiar data representations within a node–a resource controller as introduced in
Section 4.3.1–and to expose at the architecture level a unified representation of the
information. Standards for these representations must be established at the project
start. Examples of topics that need standardization are: categories for information
classification, technical measurement units, and data structures that are visible at the
message interfaces.

Naming: "Name space design is architecture design''–this sentence underscores the
importance of establishing a set of generic rules for the formation of names for all
data elements that are going to be used in the project.

270 CHAPTER 13 SYSTEM DESIGN

Message Interfaces: The structure of the abstract message interfaces introduced in
Section 4.3.1 should be unified within a project. Standard protocols must be defined
that govern the exchange of information across these interfaces.

Documentation: A consistent and well-structured project documentation, including
a project glossary that contains all project-related terms, is a prerequisite for smooth
communication within a project. It is important that a disciplined version control of
the documentation is performed, and that the consistency between the documentation
and the code is maintained.

Software Development Tools: The software tools that will be used within a
project should be selected and frozen before the project starts. Although many tools,
such as compilers, proclaim to adhere to industry standards, full compatibility among
different tools or different versions of the same tool should never be assumed.

Change Control: A disciplined procedure for change control is part of any
standard project management system, and should be included in the initial project
standards.

13.2.2 Essential System Functions

The focus of the requirements phase is to get a good understanding and a concise
documentation of the essential system functions that provide the economic
justification of the project. There is always the temptation to get side-tracked by
irrelevant details about representational issues that obscure the picture of the whole.
Often, it is easier to work on a well-specified detailed side problem than to keep focus
on the critical system issues. It requires an experienced designer to decide between a
side problem and a critical system issue.

An Approach: Starting from the given control objectives, it is practical to work
backwards from the identified control outputs of the computer system to the key
control algorithms and further to the required sensor inputs. In this way, the data
transformation tasks and the relevant RT entities can be identified. The dynamics of
the RT entities determine the temporal characteristics of the essential RT
transactions, such as the sampling periods and the response times.

In the next step, the end-to-end protocols for monitoring the effects of the outputs
can be sketched. Additional sensor inputs will result from this analysis. Further
sensor inputs will be needed to discover alarm conditions within the process, and to
detect any single sensor error by correlating the readings of the sensors with a process
model to arrive at agreed data values (see Section 9.2).

After the RT-entities have been identified, it is necessary to investigate the attributes
of the RT-entities, such as their value domain, their maximum rate of change, and
the temporal accuracy intervals of the observations. The list of RT entities
establishes a first version of the RT database. This is an important input to the
subsequent design phase.

The other input to the design phase comes from an analysis of the data-
transformation requirements, most importantly from the control algorithms. The

CHAPTER 13 SYSTEM DESIGN 271

structure of the control algorithms, their estimated execution time, their h-state
between activations (if any), and the source of the control signals to activate the
control algorithm must be studied.

Acceptance Test: Every requirement must be accompanied by an acceptance
criterion that allows to measure, at the end of the project, whether the requirement
has been met. If it is not possible to define a distinct acceptance test for a
requirement, then the requirement cannot be very important: it can never be decided
whether the implementation is meeting this requirement or not. Assuming that the
original problem statement formulated during the feasibility study is the best one or
even the right one, is definitely not wise [Rec91]. A critical designer will always be
suspicious of postulated requirements that cannot be substantiated by a rational chain
of arguments that, at the end, leads to a measurable contribution of the stated
requirement to the economic success of the project.

13.2.3 Exploring the Constraints

In every project, there is an ongoing conflict between what is desired and what can be

done within the given technical and economic constraints. A good understanding and
documentation of these technical and economic constraints reduce the design space
and help to avoid exploring unrealistic design alternatives.

Minimum Performance Criterion: The minimum performance criteria
establish the borderline between what constitutes success and what constitutes failure

during the operation of a system (see Section 6.3.1). The minimum system
performance must be maintained under all fault and load conditions specified in the
load and fault hypothesis (Section 1.5.3). A precise specification of the minimum
performance, both in the value domain and in the temporal domain, is necessary for
the design of a fault-tolerant system architecture that does not demand excessive
resources. Of course, one must try to go way beyond the minimal performance under
normal operating conditions. But the constraints on system performance under
adverse conditions must be well-defined in the requirements document.

Dependability Constraints: The dependability constraints of the application are
often design drivers. These constraints can concern any one of the measures of
dependability introduced in Section 1.4: reliability, safety, availability,
maintainability, and security. A precise specification of the minimal dependability
requirements helps to reduce the design space, and guides the designer in finding
acceptable technical solutions.

Cost Constraints: As already mentioned, the economic constraints are most often
of overriding concern. A good understanding of the economies of an application
domain is absolutely essential to arrive at proper system solutions. One is
sometimes perplexed at the naiveté of the so-called system architects that propose a
new architecture solution for an application domain that has not been clearly defined.

Example: In the automotive industry 95% of the cost is in production and
marketing and only 5% is in the design of a product. Therefore, every effort must be

272 CHAPTER 13 SYSTEM DESIGN

made to reduce the production cost, even if this entails a more expensive and rigorous
system design phase. For example, the manufacturing cost of a complete node of a
distributed system should be in the order of $ 10. To achieve this cost level, a single
chip microcomputer implementation with all memory and I/O circuitry on chip is the
only technical alternative. This cost constraint excludes design alternatives that
cannot be implemented on a single chip within the envisioned time span of the
project.

13.3 DECOMPOSITION OF A SYSTEM INTO SUBSYSTEMS

After the essential requirements have been captured and documented, the most crucial
phase of the life cycle, the design of the system structure, is reached. Complex

systems will evolve from simple systems much more rapidly if there are stable

intermediate forms than if there are not [Sim81]. Stable intermediate forms are
encapsulated by small and stable interfaces that restrict the interactions among the
subsystems. In the context of distributed real-time systems, a node with autonomous
temporal control can be considered a stable intermediate form. The specification of
the interface between the nodes and the communication system, the CNI, is thus of
critical importance.

In general, introducing structure restricts the design space and may have a negative
impact on the performance of a system. The more rigid and stable the structure, the
more notable the observed reduction in performance will be. The key issue is to find
the most appropriate structure where the performance penalties are outweighed by the
other desirable properties of the structure, such as composability, understandability,
and the ease of implementing fault-tolerance.

Figure 13.1: Example of a simple interaction matrix.

13.3.1 Identification of the Subsystems

The list of RT entities forming the RT database, and the list of data-transformation
tasks that have been collected during the requirements phase, form the starting point
for the formation of subsystems. It is often helpful to construct an interaction matrix
(Figure 13.1) that visualizes the interactions between the design elements.

In the rows and columns of the interaction matrix are the RT entities and data
transformation tasks. The elements of the matrix inform of relations between these

CHAPTER 13 SYSTEM DESIGN 273

entities. These could be relations regarding the physical proximity, the temporal
cohesion, or the input/output.

The analysis of the interaction matrix, enhanced by the engineering insight in the
application domain, will lead to clustering of RT entities and data transformation
functions, suggesting a first version of a cluster and node structure. This first version
of a cluster structure will lead to some intercluster interfaces that must be scrutinized
with respect to their temporal cohesion and data complexity. The same analysis must
be done for the message interfaces at the CNIs of the nodes. The world interfaces of
the nodes, i.e., the I/O interfaces of the nodes to the controlled object are of lesser
concern at this phase of the analysis. These interfaces are to become local interfaces
of the nodes with no global visibility. It is a good rule to trade local complexity for
global simplicity.

The well-established design principle "form follows function" should not be violated.
The allocation of functions to nodes must be guided by the desire to build functional
units (nodes) with a high inner connectivity and small external interfaces. It can be
expected that there will be misfits, that some requirements cannot be accommodated
in any sensible way. It is good practice to challenge these clashing requirements and
to reexamine their economic utility. Extreme requirements should never drive a
design process, and determine an architecture [Rec91 ,p.46]..

13.3.2 The Communication Network Interface

The communication network interface (CNI) between a node and the intracluster
communication system is the most important interface of a distributed architecture
(see also Section 2.1.3). The CNI determines the complexity at the cluster level. It
also acts as an error-detection interface that defines the error-containment regions
within a cluster. Any error that is not detected at the CNI has the potential to cause a
total system failure.

If the CNI is designed as a data-sharing interface without any control signals, then
there is no possibility of control error propagation across the CNI. If a control signal
is allowed to cross the CNI, an important concern is the peak load activation--the
normal load will take care of itself. Ask yourself the questions: What are the
mechanisms that detect any control-error propagation across the CNI, what is the
worst thing that other nodes could do across the CNI, which mechanisms will detect
and stop such behavior? [Rec91, p.89] It is a wise decision to design the CNI in such
a way that it is insensitive to unknown or uncontrollable external influences from the
controlled object. It is up to the nodes to maintain control over these external
influences and to force them into a disciplined behavioral pattern at the CNI.

What is the right degree of flexibility at the CNI? This is a difficult question to
answer. On the one hand, one should build and maintain options as long as possible
during the design and implementation of complex systems–they may be needed at
some future point in time. [Rec91,p.93] On the other hand, flexibility is not free–it
has a dear price. It reduces the predictability and limits the error-detection capability.
The key issue is to find the right level of controlled flexibility–to provide flexibility

274 CHAPTER 13 SYSTEM DESIGN

as long as the price for the flexibility can be justified. For example, the provision of
extra data-fields at the CNI will impact the performance but will not have any other
adverse side effect. If the performance at the CNI is not a bottleneck, then the price
paid for this added flexibility is negligible.

Development of the Message Schedules: If the communication system
within a cluster is time-triggered, then the CNI is a data-sharing interface that hides
the communication behind the memory abstraction as outlined in Section 8.2. The
design of the static message schedules, i.e., the MEDL for the communication
controllers, must be performed during the architecture design phase. This can proceed
according to the following steps:

(i) Allocation of the Tasks: Based on the results of the clustering analysis and the
constraints of the application (e.g., input/output requirements), and the
available characteristics of the computational tasks (estimated WCET, required
images of RT-entities, temporal accuracy requirements), the allocation of tasks
to computational nodes can be performed.

Forming of Messages: The allocation of the tasks to the nodes establishes the
communication requirements among the nodes. Data elements can be grouped
into messages for internode communication.

(iii) Scheduling of the Messages: The dispatcher table (MEDL) for the
communication controller of each node must be constructed for each operational
mode. Care must be taken that the constraints on the mode changes are
observed.

It is well known that the allocation/scheduling problem belongs to the class of NP
complete problems. The search for a good solution can be guided by sensible
heuristics as discussed in Chapter 11.

13.3.3 Result of the Architecture Design Phase

At the end of the architecture design phase, a document that describes the computer
system architecture must be produced. This document must contain at least the
following information:

(i) The decomposition of the system problem into clusters, and the function of
each cluster. The identification of orthogonal operating modes of the whole
cluster.

(ii) A specification of the data semantics and timing at the intercluster interfaces.
These intercluster interfaces will be implemented later by gateway nodes that
often must interact with legacy systems. A legacy system is an already existing
operational hardware/software system that is difficult to modify.

(iii) For each cluster, a decomposition of the cluster into nodes, a description of the
functions of each node, and a high-level specification of the input/output
interfaces of each node to the controlled object. A detailed specification of these
node-local interfaces is not required at the architectural level.

(ii)

CHAPTER 13 SYSTEM DESIGN 275

(iv) A precise specification of all messages exchanged among the nodes, including
the message formats and timing. All details of the CNIs must be fixed at the
end of the architecture design phase.

(v) A description of the data transformations performed in each node, a listing of
the output data, the input data and the data transformation algorithms.

(vi) An analysis of the dependability requirements and a suggestion of how these
requirements are addressed at the cluster level, i.e., the formation of fault-
tolerant units (FTUs) and the replication of messages.

At the end of the architecture design phase, the CNIs of all nodes of a cluster should
be frozen for the given version, such that the detailed design and implementation of
the nodes can proceed in isolation. In a time-triggered architecture the exact contents
of the message descriptor lists (MEDL) that control the intracluster communication
should be available at the end of the architecture design phase.

The design of a large system is never a linear sequence of activities. During the
design process, the designer learns more about the application, which forces the
designer to go back to challenge previously made decisions and to iterate. Alternative
designs must be developed and compared.

13.4 TEST OF A DECOMPOSITION

We do not know how to measure the quality of a design on an absolute scale. The
best we can hope to achieve is to establish a set of guidelines and checklists that
facilitate the comparison of two design alternatives relative to each other. It is good
practice to develop a project-specific checklist for the comparison of design
alternatives at the beginning of a project. The guidelines and checklists presented in
this section can serve as a starting point for such a project-specific checklist.

13.4.1 Functional Coherence

A node of a distributed system should implement a self contained function with high
internal coherence and low external interface complexity. If the node is a gateway or
an interface node, i.e., it processes input/output signals from its environment, only
the abstract message interface to the cluster and not the concrete world interface to the
environment (see Section 4.3.1) is of concern. The following list of questions is
intended to help determine the functional coherence and the interface complexity of a
node:

(i) Does the node implement a self-contained function?

(ii) Is the h-state at the ground state defined?

(iii) Is it sufficient to provide a single level of error recovery after any failure, i.e., a
restart of the complete node? A need for a multi-level error recovery is always
an indication of a weak functional coherence.

276 CHAPTER 13 SYSTEM DESIGN

(iv) Are there any control signals crossing the message interface or is it a strict
data-sharing interface? A strict data-sharing interface is simpler and should
therefore be preferred.

How many different data elements are passed across the message interface?
What are the timing requirements?

Are there any phase-sensitive data elements passed across the message
interface?

(v)

(vi)

13.4.2 Testability

Since a node implements a single function, it must be possible to test the node in
isolation. The following questions should help to evaluate the testability of a node:

(i) Are the temporal as well as the value properties of the message interface
precisely specified such that they can be simulated in a test environment?

(ii) Is it possible to observe all input/output messages and the h-state of a node
without the probe effect?

(iii) Is it possible to set the h-state of a node from the outside to reduce the number
of test sequences?

(iv) Is the node software replica deterministic, so that the same input cases will
always lead to the same results?

(v) What is the procedure to test the fault-tolerance mechanisms of the node?

(vi) Is it possible to implement an effective built-in self test into the node?

13.4.3 Dependability

The following checklist of questions refers to the dependability of a design:

(i) What is the effect of the worst malicious failure of the node to the rest of the
cluster? How is it detected? How does this failure affect the minimum
performance criterion?

How is the rest of the cluster protected from an erroneous mode-change request
from a faulty node?

In case the communication system fails completely, what is the local control
strategy of a node to maintain a safe state?

How long does it take the other nodes of the cluster to detect a node failure? A
short error-detection latency simplifies the error handling drastically.

What is the error-detection coverage of the node regarding value failures and
timing failures?

How long does it take to restart a node after a crash failure? Focus on the fast
recovery from a single failure. The zero failure case takes care of itself and the
two or more failure case is expensive and unlikely to succeed. How complex is
the recovery?

(vii) Are the normal operating functions and the safety functions implemented in
different nodes, such that they are in different error-containment regions?

(ii)

(iii)

(iv)

(v)

(vi)

CHAPTER 13 SYSTEM DESIGN 277

(viii) How stable is the message interface with respect to anticipated change
requirements? What is the probability and impact of changes on the rest of the
cluster?

13.4.4 Physical Characteristics

There are many possibilities to introduce common-mode failures by a careless
physical installation. The following list of questions should help to check for these:

(i) Are mechanical interfaces of the replaceable units specified, and do these
mechanical boundaries of replaceable units coincide with the diagnostic
boundaries?

Are the two SRUs of an FTU mounted at different physical locations, such
that a common mode external fault (e.g., water, EMI, mechanical damage in
case of an accident) will not destroy both SRUs?

Do different nodes of an FTU have different power sources to reduce the
possibility of common mode failures induced by the power supply? Is there a
possibility of a common mode failure via the grounding system (e.g.,
lightning stroke)? Are the SRUs of an FTU electrically isolated?

What are the cabling requirements? What are the consequences of transient
faults caused by EMI interference via the cabling or by bad contacts?

What are the environmental conditions (temperature, shock) of the node? Are
they in agreement with the component specifications?

(ii)

(iii)

(iv)

(v)

13.5 DETAILED DESIGN AND IMPLEMENTATION

At the end of the architectural design phase, the message interfaces among the nodes
within a cluster are established and stable. The design effort can now be broken down
into a set of loosely-related concurrent activities, each one focusing on the design,
implementation, and testing of an individual node.

13.5.1 Definition of the I/O Interfaces

The world interface between a node and its environment (e.g., the controlled object)
has not been investigated in detail during the architectural design phase. It is up to
the detailed design of a node to specify and implement this interface. In some cases,
such as the design of the concrete man-machine interface for the operator, this can be
a major activity. The protocols to control the field bus nodes and the software for the
field bus nodes are part of this detailed design phase.

13.5.2 Task Development

In this phase, the task structure within a node is designed and the programs that
implement the specified functions must be developed. If at all possible, only the S-
task model should be used (Section 4.2.1). Every S-task starts by reading the input

278 CHAPTER 13 SYSTEM DESIGN

data items and terminates with the production of the output data items. The h-state of
every S-task must be identified and stored in a single data structure. The sum of the
h-states of all tasks at predetermined points in time form the ground state of the node
(Section 4.6.2). The ground state of a node should be sent to the cluster via a periodic
output message for the following two reasons:

(i) To be able to monitor from the outside, without inducing the probe effect,
whether the ground state of a node is correct, and

(ii) To offer the ground state to a replicated node that has to reintegrate itself into an
operational cluster periodically.

13.5.3 Task Scheduling

In this phase, the temporal control structure within a node is developed. The temporal
control structure determines at what point in time a particular task must be executed
and at what point in time a message has to be sent to some other node. When
designing a time-triggered architecture, care must be taken that the periodic schedule
contains a ground state where all tasks are inactive and no message is in transit, i.e.,
all channels are flushed. This is the ideal point for reintegrating joining nodes.

13.6 REAL-TIME ARCHITECTURE PROJECTS

Many of the current real-time systems are based on stripped-down versions of time-
sharing operating systems. Although fast mechanisms for context switching and
interrupt processing are provided, and some user control over the scheduling strategy
is possible, these systems are still based on the following questionable assumptions
[Stan91]:

(i) Hardly any knowledge about the run-time environment, i.e., the controlled
object, is assumed to be available a priori. Therefore, it is not possible to
optimize the run-time system with respect to minimal resource requirements
and robustness. This is in contrast to modern real-time operating systems for
embedded applications, such as ERCOS (see Section 10.5).

The task model is based on C-tasks with arbitrary blocking points within a task
and unspecified blocking times. It is thus impossible to predict the worst-case
execution time (WCET) of tasks.

(iii) One attempts to minimize the average response time and maximize the
throughput. No effort is made to limit the maximum response time, the most
important metric for real-time systems.

(iv) The issue of replica determinism is not addressed, because fault tolerance is
considered an application concern.

Over the past few years, a number of real-time system research projects have
challenged these basic assumptions and developed solutions that are in better
agreement with the requirements of real-time systems. In the following sections,
overviews of three of these research projects, SPRING, MAFT, and FTPP are

(ii)

CHAPTER 13 SYSTEM DESIGN 279

presented. The fourth project, MARS, that has been developed at the Technische
Universität Wien, is covered in Chapter 14.

13.6.1 SPRING

A SPRING system [Sta91] is a physically distributed real-time system composed of
a network of multiprocessor nodes. Each node contains system processors,
application processors, a network controller, and an I/O subsystem to interconnect to
the controlled object. The system processors execute the scheduling algorithms,
handle the high-priority interrupts and support the operating system services. The I/O
subsystem handles the slow I/O devices and the process input/output (sensors and
actuators). The application processors execute the application tasks.

The software is organized into the SPRING operating system (the SPRING kernel)
and the application tasks. The operating system performs the task management,
scheduling, memory management, and intertask communication. All operating
system calls have a bounded WCET (worst-case execution time). An application task
consists of the reentrant code, local data, global data, a stack, a task descriptor, and a
task control block. Each task requires all resources before it starts, and it releases the
resources upon completion, thus avoiding any unpredictable blocking during task
execution. An application task is characterized by its

(i) WCET which may be a function that depends on various execution time
parameters, such as the input data or current state information,

(ii) Type and importance level (critical, essential or unessential),

(iii) Time parameters, such as deadline and period,

(iv) cCommunication and precedence graph,

(v) Resource requirements, such as memory and I/O ports, and

(vi) Administrative data, e.g., the location of the task copy in memory.

The SPRING scheduler categorizes the application tasks by their importance and their
effect on the environment. For the purpose of scheduling, three task classes are
formed: critical tasks, essential tasks, and unessential tasks. Critical tasks must meet
their deadlines to avoid a system failure. If an essential task does not meet its
deadline, the performance of the system is degraded. The execution of unessential
tasks (they do not have hard deadlines) can be delayed if there is an overload scenario.

The goal of the SPRING scheduling algorithm is to dynamically guarantee the
deadlines of newly arriving tasks in the context of the current load. Scheduling is
performed at four levels:

(i) At the lowest level, a dispatcher for each application processor takes the next
ready task from the prearranged scheduling queue.

(ii) At level two, a local scheduler for each node determines if a newly arriving task
can be accepted and guaranteed locally, considering the current load at the node.
If accepted, the local scheduler rearranges the scheduling queue.

(iii) At level three, a distributed scheduler tries to redistribute the load among the
nodes.

280 CHAPTER 13 SYSTEM DESIGN

(iv) At the fourth level, a meta-scheduler monitors the system and adapts various
parameters to improve the adaptability and flexibility of the SPRING system.

Fault tolerance is not a focus of the SPRING project. A more detailed description of
the SPRING project can be found in [Sta91].

13.6.2 MAFT

The Multicomputer Architecture for Fault Tolerance (MAFT) is a distributed
computer architecture designed to combine ultrahigh reliability with high
performance in a real-time environment. It consists of a set of nodes connected by a
broadcast bus network. Each node contains two processors, an operations controller

and an applications processor. The operations controller handles the majority of the
system's executive functions, such as intranode communication, clock
synchronization, error detection, task scheduling, and system reconfiguration. The
application processors are thus free to execute the application tasks.

In MAFT, a frame-based synchronization is achieved by the periodic exchange of
system state messages such that every node is informed about the state of the clocks
at the other nodes. A fault-tolerant internal synchronization algorithm is used to
calculate a correction term for each local clock. (The accuracy of the internal clock
synchronization depends on the parameters discussed in Section 3.4.3.)

Each operations controller stores a copy of all shared data values in its own data
memory and handles the management and voting on the application values in a
manner that is transparent to the application processor. Different voting algorithms
can be selected if an approximate voting strategy is demanded. Byzantine agreement
and converging voting algorithms are applied to maintain agreement even in case a
node behaves maliciously faulty. Every operations controller monitors the message
traffic to detect any error in a node, as revealed by its output messages. The errors are
reported to all other nodes in error messages such that every node can maintain a local
penalty count for all nodes. Byzantine agreement on these penalty counts is
maintained.

In MAFT, the application software is organized into non-preemptable tasks. A task
must be executed without interruption on a single application processor. Each task
has several attributes: iteration frequency, priority, desired redundancy, and intertask
dependencies. The allocation of tasks to nodes is determined by the reconfiguration
process. This allocation is static for any given set of operating nodes and changes
only if the set of operating nodes changes. In MAFT, task schedules are cyclic. The
smallest schedule period is called an atomic period. In the current implementation,
1024 atomic periods form the master period, the longest iteration period. The
scheduler selects a task with the highest relative priority from the ready set. The
scheduler is fully replicated, and selects tasks for every node in the system. The
selections for the own node are executed locally, the selections for the other nodes are
monitored to acquire information about the "health" of the other nodes.

A more detailed description of the MAFT project can be found in [Kie88].

CHAPTER 13 SYSTEM DESIGN 281

13.6.3 FTPP

The Fault-Tolerant Parallel Processor (FTPP) is a high-reliability high-throughput
real-time computer designed at Draper Labs [Har88] that can tolerate Byzantine
failures. The building blocks of the architecture are processing elements and network
elements. Processing elements and network elements are interconnected in a
hierarchical manner as shown in Figure 13.2. The interconnection structure observes
the Byzantine protocol requirements as outlined in Section 6.4.3. A network element
with the four associated processing elements forms a primary fault-containment

region. The primary fault-containment regions communicate with each other by
dedicated point-to-point communication links to exchange synchronization
information and interprocess messages. A processing element is connected to its
network element by a single dedicated communication channel. A processing element
including its communication channel forms a secondary fault-containment region.

Figure 13.2: 16 Processing element cluster of FTPP [Har88].

A Byzantine resilient FTU (in FTPP an FTU is called a computational group) must
comprise processing elements from disjoint network elements. Since not all
functions in a system are safety-critical, and since they must tolerate Byzantine
failures, FTUs of different replication degree can be formed to increase the
throughput. If a processing element fails, another processing element from the same
primary fault-containment region can be used as a replacement.

FTPP does not provide global time, but performs a functional synchronization of the
application tasks. The redundant processing elements that form an FTU synchronize
each other by exchanging messages at recurring interaction points of the application.
Because Byzantine agreement (see Section 6.4.3) has to be performed at these
interaction points, a faulty processing element can be detected. A processing element
that deviates from the majority beyond an a priori defined time bound is considered
faulty by the majority, and is excluded from the ensemble.

A more detailed description of the FTPP can be found in [Har88].

282 CHAPTER 13 SYSTEM DESIGN

POINTS TO REMEMBER

• Design is a creative holistic human activity that cannot be reduced to following a
set of rules out of a design rule book. Design is an art, supplemented by
scientific principles.

In every project, there is an ongoing conflict between what is desired and what

can be done within the given technical and economic constraints. A good
understanding and documentation of these technical and economic constraints
reduces the design space, and helps to avoid exploring unrealistic design
alternatives.

Two kinds of structuring of a computer system can be distinguished to reduce the
system complexity: horizontal versus vertical structuring. Horizontal structuring
(or layering) is related to the process of stepwise abstraction. Vertical structuring
is related to the process of partitioning a large system into a number of nearly
independent subsystems.

The analysis and understanding of a large problem is never complete and there are
always good arguments for asking more questions concerning the requirements
before starting with the "real" design work.

Often it is easier to work on a well-specified detailed side problem than to keep
focus on the critical system issues. It requires an experienced designer to decide
what is a side problem and what is a critical system issue.

Every requirement must entail an acceptance criterion that allows to measure, at
the end of the project, whether the requirement has been met. If it is not possible
to define a distinct acceptance test for a requirement, then the requirement cannot
be very important: it can never be decided whether the implementation is
meeting this requirement or not.

The minimum performance criteria establish a borderline between what
constitutes success and what constitutes failure. A precise specification of the
minimum performance, both in the value domain and in the temporal domain, is
necessary for the design of a fault-tolerant system architecture that does not
demand excessive resources.

The dependability constraints of the application are often design drivers. A
precise specification of the minimal dependability requirements helps to reduce
the design space, and guides the designer in finding acceptable technical
solutions.

In the context of distributed real-time systems, a node with an autonomous
temporal control can be considered a stable intermediate form. The specification
of the interface between the nodes and the communication system, the CNI, is
thus of critical importance.

The introduction of structure restricts the design space, and may have a negative
impact on the performance of a system. The key issue is to find the most

appropriatestructure where the performance penalties are outweighed by the other
desirable properties of the structure.

•

•

•

•

•

•

•

•

•

CHAPTER 13 SYSTEM DESIGN 283

The allocation of functions to nodes must be guided by the desire to build
functional units (nodes) with a high inner connectivity and small external
interfaces. It can be expected that there will be misfits, that some requirements
cannot be accommodated in any sensible way. It is good practice to challenge
these clashing requirements and to reexamine their economic utility. Extreme
requirements should never drive a design process, and determine an architecture.

The CNI determines the complexity at the cluster level, and acts as an error
detection interface that defines the error-containment regions within a cluster.
Any error that is not detected at the CNI has the potential to cause a total system
failure.

•

•

BIBLIOGRAPHIC NOTES

Many books have been written about design, most of them emanating from the field
of architecture design. The work of the Roman architect Vitruvius [Vit60], written
B .C., contains design guidelines that are still valid today. "Design Methods, Seeds of
Human Futures" by Jones [Jon78] takes an interdisciplinary look at design that
makes an enjoyable reading for a computer scientist. More recently, the excellent
book "Systems Architecting, Creating and Building Complex Systems" by Rechtin
[Rec91] presents many empirically observed design guidelines that have been an
important input in writing this chapter.

Space does not permit to cover all interesting real-time system-architecture projects
in this chapter. The interested reader is advised to look at the following additional
projects: the two famous "historical" projects, the SIFT project [Wen78] at SRI and
the FTMP project at MIT Draper Laboratory [Hop78], the Autonomous Decentralized

Computer Control System [Iha82, Iha84] developed by Hitachi in Japan, the ARTS
project at CMU [Tok89], and the Real-Time Mach Project at CMU [Tok90], the
ERICA project at Philips Eindhoven [Dri90], the HARTS project at the University
of Michigan [Shi91, Shi95], the ESPRIT project DELTA 4 [Pow91] and the Maruti-
II project at the University of Maryland [Sak95].

REVIEW QUESTIONS AND PROBLEMS

13.1

13.2

13.3

13.4

13.5

What is the difference between layering and partitioning? Which one of these
structuring techniques supports the design of error-containment regions?

Discuss the advantages and disadvantages of grand design versus incremental

development.

Which are the characteristics of a "wicked" problem?

Make a list of the project standards that should be available at the begin of a
project.

Discuss the different types of constraints that restrict a design. Why is it
important to explore these constraints before starting a design project?

284 CHAPTER 13 SYSTEM DESIGN

13.6

13.7

13.8

13.9

13.10

13.11

13.12

What is the minimum performance criterion, and why is it important in the
design of fault-tolerant systems?

Discuss the advantages and disadvantages of introducing structure into a
design.

Discuss the most important interfaces in a distributed real-time system
architecture.

Which are the results of the architecture design phase?

Establish a checklist for evaluation in design from the point of view of
functional coherence, testability, dependability, and physical installation.

Compare the fundamental design decisions in the three real-time architecture
projects SPRING, MAFT, and FTPP.

Sketch the interaction matrix for the seven nodes of the rolling mill problem
(Figure 1.9).

Chapter 14

The Time-Triggered Architecture

OVERVIEW

In the final chapter, the different concepts that have been developed in the previous
thirteen chapters are brought together into a coherent time-triggered architecture
(TTA). This architecture is being implemented at the Technische Universität Wien
with industrial support, taking advantage of the lessons learned during the more than
fifteen years of research on dependable distributed real-time systems.

The chapter starts with a short description of the MARS (MAintainable Real-time
System) project. It then gives an overview of the time-triggered architecture (TTA)
and emphasizes the essential role of the real-time database in this architecture. The
building blocks of a TTA prototype implementation are described. The only non-
standard hardware unit is the TTP/C communication controller. The TTP/C controller
implements all functions of the TTP/C protocol and interfaces to the host via a dual-
ported memory. The TTP controller contains independent bus guardians to protect the
bus against "babbling idiot" failures of the nodes.

Section 14.3 is devoted to the software support tools that are being implemented and
planned for the development of software in the TTA. The time-triggered operating
system that has been developed for MARS has been ported to the TTA host, and
adapted to the Communication Network Interface of the TTP controller. The
generation of the message descriptor lists for the TTP controller is supported by a
"cluster compiler". The fault-tolerance strategy of the TTA is covered in Section
14.4. TTA supports the implementation of replicated communication channels and
fault-tolerant units consisting of replicated fail-silent nodes, TMR nodes, and other
FTU organizations.

Finally. Section 14.5 speculates on the implementation of TTA systems that are
dispersed over a wide geographical area.

286 CHAPTER 14 THE TIME-TRIGGERED ARCHITECTURE

14.1 LESSONS LEARNED FROM THE MARS PROJECT

The time-triggered architecture evolved out of the many years of university research
centered on the topic of distributed fault-tolerant real-time systems, and carried out in
the context of the MARS project.

14.1.1 The MARS Project

Project Goals: The goal of the MARS project was the design and implementation
of a distributed fault-tolerant architecture for hard real-time applications from the
point of view of maintainability in hardware and software. The project, which started
in 1979, took the vision that within twenty years it would be possible to build
compact nodes of a distributed real-time system on a single chip. This chip should be
so inexpensive that the system architect would be free to use as many chips as
necessary to implement the given application requirements within a clean functional
structure that would not be unnecessarily complicated by multiplexing diverse
functions on a single hardware node. A hardware node is considered a unit of failure

with a single external failure mode: fail-silence. Fault-tolerance can be implemented
by replicating the replica-deterministic nodes.

The MARS Architecture: The MARS architecture decomposes a real-time
system into clusters, fault-tolerant units, nodes and tasks as outlined in Section 4.2.
It is based on the assumption that the nodes exhibit a fail-silent behavior, i.e., they
produce either correct results, detectably incorrect results at the correct point in time,
or no results at all. Nodes can be grouped into FTUs. As long as any one node of an
FTU is operational, the FTU delivers a correct service to its clients.

It was recognized at an early stage of the project that only time-triggered architectures
offer the predictability required by hard real-time applications. A distributed time-
triggered architecture requires a fault-tolerant global time-base. For distributed clock
synchronization, a special VLSI chip, the clock synchronization unit CSU [Kop87]
was designed and built around 1986 to support the fault-tolerant clock
synchronization within MARS. This chip was used in the subsequent
implementations of the MARS hardware.

In 1989, a number of European University and Research Laboratories formed the
ESPRIT project, Predictably Dependable Computer Systems (PDCS) [Ran95].
Within PDCS a new prototype implementation of MARS was funded, and extensive
fault-injection experiments on this prototype were carried out at three different sites,
at LAAS in Toulouse, France, at Chalmers University in Gothenburg, Sweden, and
at the Technical University of Vienna, Austria. These fault-injection experiments led
to a number of new insights that were instrumental for the design of the Time-
Triggered Architecture (TTA).

Building Fail-Silent Nodes: A number of techniques are known for building a
fail-silent node that will tolerate any single hardware fault. One common technique is

CHAPTER 14 THE TIME-TRIGGERED ARCHITECTURE 287

the duplication of the hardware of every module (e.g., in the STRATUS system
[Web91]), and to compare the results of both modules by a self-checking checker
(pair and spare technique, [Joh89, p. 67]). If the results of the two modules differ,
then an error has been detected. The two modules operate in tight synchronization
driven by single fault-tolerant clock. One problem with this approach is that a single
fault that hits both computational channels at the same time can lead to correlated
errors. Experiments conducted by Kanekawa [Kan96] show that phase-locked tightly
synchronized modules have a non-negligible probability of correlated errors.

14.1.2

The MARS implementation uses a different approach to achieve fail-silence. Every
critical computation is calculated twice on a standard commercial-off-the-shelf
(COTS) microprocessor and the results of these computations are compared. Each one
of the nodes has its own clock that is not tightly synchronized with the other clock
so that the probability of a single fault causing correlated errors in both nodes is
reduced. Additional error detection mechanisms have been implemented in the PDCS
prototype of the MARS architecture, as described in [Rei95].

The duplicate execution of application tasks is supported by the operating system by
providing a special execution mode, the High-Error-Detection-Coverage (HEDC)

mode, that is transparent to the application software. The High-Error-Detection-
Coverage (HEDC) mode provides two extra mechanisms to increase the error-
detection coverage with respect to transient faults:

(i)

(ii)

The High Error Detection Coverage Mode (HEDC)

The time-redundant execution of application tasks at the sender.

The calculation of an end-to-end CRC by the application task at the sending
host to protect the complete path of the message between the sender task and
the receiver task.

Time Redundant Task Execution: In safety-critical applications, the designer
can request the host operating system to repeat the execution of each task at different
times, to calculate an application level end-to-end CRC after each execution and to
compare these signatures. This service can be provided by the operating system in the
host without any modification of the application software. If the CRCs of the two
task executions are not identical, then, one of the task executions has been corrupted
by a transient fault. In this situation, it cannot be determined which one of the
executions is incorrect. Therefore, both results are considered suspect, and none of the
messages is sent. Since in a fault-tolerant configuration, there is a replicated node
providing the identical service, no service interruption is seen by the client of this
FTU.

End-to-End CRC: The end-to-end CRC is calculated in addition to the 16 bit
communication CRC. In a safety-critical application, the messages are thus protected
by two CRC fields, one at the communication level, and one at the end-to-end
(application) level. To avoid the possibility that a syntactically correct but
semantically incorrect message is selected by the operating system (this failure mode
was observed in the fault-injection experiments discussed Section 12.4.2), the

288 CHAPTER 14 THE TIME-TRIGGERED ARCHITECTURE

expected send time and a unique message key are concatenated with the message
before the end-to-end CRC is calculated (Figure 14.1) for each message at the
application level. This mechanism makes sure that a transient error corrupting a
message between the point in time when a message has been generated by the
application software at the sending node, and the point in time when a message is
used by the application software at the receiving node is detectable.

End-to-end CRC Calculation of an HEDC messages:

Data Field of an of an HEDC messages:

Figure 14.1: End-to-end CRC of HEDC messages.

14.2 THE TIME-TRIGGERED ARCHITECTURE

The Time-Triggered Architecture is an architecture for distributed real-time systems in
safety critical applications, such as computer controlled brakes, computer controlled
suspension, or computer assisted steering in an automobile. A TTA-node consists of
two subsystems, the communication controller and the host computer, as depicted in
Figure 8.2. The Communication Network Interface between these two subsystem is a
strict data-sharing interface as explained in Section 8.2.

The following problems must be addressed in any fault-tolerant distributed real-time
system that is based on a bus architecture. In the TTA, they are solved at the level of
the communication systems:

(i) Fault-tolerant clock synchronization.

(ii) Timely membership service.

(iii) Reconfiguration management.

(iv) Provision of fail-silence in the temporal domain.

In this section the architectural principles and a concrete prototype implementation of
the time-triggered architecture are presented. This implementation tries to use
commercial-off-the-shelf (COTS) components wherever possible.

14.2.1 Economy of Concepts

The time-triggered architecture is based on the principle of "economy of concepts",
i.e., a small number of orthogonal concepts are used over again to simplify the
understanding of a design. Examples of these recurring concepts are:

(i) The introduction of stable interfaces, free of control signals, to partition a
system into nearly decomposable subsystems that act as error containment
regions. The precise specification of all interfaces in the value domain and the

CHAPTER 14 THE TIME-TRIGGERED ARCHITECTURE 289

temporal domain makes it possible to test every design unit in isolation, and to
avoid unintended interactions during system integration (composability).

The unification of the input/output interface to the controlled object and the
communication interface to other nodes in a cluster into a single interface type,
the CNI. The CNI provides temporally accurate state messages for the exchange
of information so that a periodic sender and receiver do not have to proceed at
the same rate.

(iii) The separation of the temporal control structure from the logical control
structure so that the temporal control structure can be validated in isolation.

(iv) The separation of the fault-tolerance mechanisms from the functions of the
application software so that no unintended interactions between these functions
can take place.

(v) The recursive application of these concepts to build large real-time systems.

The time-triggered architecture decomposes a real-time system in the same manner as
the MARS architecture: into clusters, FTUs, nodes, and tasks. There are two types of
nodes in the architecture, a fail-silent TTA-node and a fieldbus node. The TTA-nodes
are interconnected by a single or replicated real-time bus using the TTP/C protocol.
TTA-nodes can be replicated to form different types of FTUs (see Section 8.2.4). The
fieldbus node can be any single-chip microcontroller with a UART interface and a
timer supporting the TTP/A protocol.

The three-level communication architecture (Section.7.3.2) uses the following
protocols

(i) Field bus: the TTP/A protocol described in Section 8.4 is used to connect the
sensors and actuators of the controlled object to a TTA-node.

(ii) Real-time bus: the TTP/C protocol described in Section 8.3 connects the TTA-
nodes of a cluster. The communication controller of a TTA-node provides clock
synchronization, membership service, and redundancy management.

(iii) Backbone bus: The TCP/IP protocol on a standard 10 Mbit Ethernet realizes the
non-time-critical connection of a cluster to other data processing systems within
an organization.

(ii)

14.2.2 The Real-Time Database

Conceptually, the distributed real-time database, formed by the temporally accurate
images of all relevant RT entities, is at the core of the time-triggered architecture.
The real-time database is autonomously and periodically updated by the nodes of the
cluster that observe the environment or produce RT images. The real-time data base
contains a temporally valid "snapshot" of the current state of the cluster and the
cluster environment. Ideally, the elements of the real-time database should be
parametric (see Section 5.4.2). The real-time database forms a stable data-sharing
interface between the nodes that is free of any temporal control signals. The data
structures that control the updating of the real-time database are in the TTP
communication controller, physically and logically separated by the CNI from the

290 CHAPTER 14 THE TIME-TRIGGERED ARCHITECTURE

host software. These data structures are designed during the architecture design phase
of a cluster. A change in the host software cannot affect the communication pattern
that updates the real-time database.

Two different types of TTA-nodes are distinguished:

(i) Active TTA-nodes: An active TTA-node produces RT-images for the RT
database and therefore needs a time-slot on the RT bus. The set of active nodes
form the membership of the cluster.

Passive TTA-nodes: A passive TTA-node reads from the RT database but does
not produce any information for the RT database. It needs no time slot on the
bus and is not part of the membership. A good example of a passive TTA-node
is a node that monitors the operation of the real-time system. Passive nodes do
not contribute to the software complexity at the system level.

A multi-cluster TTA system will contain an RT database in each cluster. All clusters
have access to the synchronized external time. A cluster gateway connects the RT
database of one cluster to that of another cluster and implements the relative views of
the two clusters. In most cases, only a subset of the RT database will be needed in
both clusters.

Growth of a TTA architecture is easy since there is no central element in the
architecture. Nodes can be expanded into gateway nodes by implementing a second
CNI interface in the node. The CNI interface to the original cluster is not affected by
this node-local change (see Section 2.3). Understanding a large TTA system can be
decomposed into understanding each cluster. Every cluster views all other clusters as
its "natural environment", not being able to distinguish a controlled-object cluster
from a computational cluster. This architectural characteristic is of value during
software development and testing, because a test simulator will have exactly the same
interface, both in the value and time domain, as will the controlled object have later-
on.

14.2.3 The Hardware Building Blocks

We have implemented a prototype of a TTA system by using the following four
hardware building blocks:

(i) The TTP controller is built on a specially designed printed circuit board that
corresponds mechanically, electrically and logically to the Greensprings IP
Interface Standard [Gre93].

(ii) Any commercially available motherboard that supports the Greensprings IP
Interface Standard an be used as a host.

(iii) Any commercially available microcomputer with a standard UART interface can
be programmed to act as a field bus node.

(iv) Any commercially available Ethernet interface board that supports the
Greensprings IP Interface Standard can be used as a gateway to a standard
Ethernet.

(ii)

CHAPTER 14 THE TIME-TRIGGERED ARCHITECTURE 291

TTP Controller: The TTP Controller is a specially designed IP interface card. A
block diagram of the controller is shown in Figure 14.2. The TTP controller uses the
Motorola 68332 CPU as a protocol processor. The Motorola 68332 CPU contains a
powerful Time-Processing Unit (TPU) on chip that is used for the clock
synchronization and for measuring the exact arrival time of messages.

Figure 14.2: Hardware block diagram of the TTP controller.

By changing the software in the Flash EPROM, a TTP/A controller can be
implemented which supports four TTP/A channels to sensor/actuator buses. (A VLSI
chip that implements the TTP/C protocol is under development in the ESPRIT OMI
project TTA (Time-Triggered Architecture) that started in December 1996).

TTA-Nodes: Any commercially available IP compatible motherboard can be used
as a host in the TTA. A number of different processors are available on motherboards
with IP interface slots. A typical TTA node will have a motherboard with two
interface slots for two IP compatible interfaces. These two interface slots can be used
for different interface cards, resulting in different TTA-nodes (Figure 14.3).

Figure 14.3: Different types of TTA nodes.

The TTP/A and the TTP/C controller of a TTA-node use the same hardware, but
different protocol software. Both controllers have the same CNI as outlined in
Section 8.2. The software of the host sees the controlled object and the network

292 CHAPTER 14 THE TIME-TRIGGERED ARCHITECTURE

through identical data-sharing interfaces, thereby simplifying the operating system at
the host.

Fieldbus Nodes: The TTP/A fieldbus protocol can be implemented in software in
any inexpensive field bus node built around any standard microcontroller that contains
a UART interface and a timer. The fieldbus nodes provide the analog and digital
input/output lines that are used to interface to the sensors and actuators in the
controlled object. The fieldbus nodes execute the local I/O functions, perform the
conversion from raw sensor data to measured or even agreed data and send the data on
the TTP/A bus to the TTA-node. As mentioned in Section 7.3.3, fault-tolerance is
not an issue at the field bus level because the reliability bottleneck is in the
sensor/actuator.

14.3 SOFTWARE SUPPORT

Designing software for a time-triggered architecture is substantially different from
designing software for a conventional real-time computer system. The worst-case
execution time (WCET) of the tasks and the worst-case administrative overhead
(WCAO) of the operating system must be carefully controlled at design time. The
static schedules must be developed off-line. The software-design phase requires more
attention than in an event-triggered architecture.

Figure 14.4: Node-local operating system in a TTA gateway.

14.3.1 Operating System

In the time-triggered architecture, the communication system autonomously controls
the exchange of information among the nodes, and provides the distributed services
for node coordination, such as clock synchronization, membership, and redundancy
management. The node-local operating system must support the following functions
(Figure 14.4):

(i) control the execution of the application tasks within a node via the application-
program interface (API), and

(ii) service the information transfer across the external node interfaces. If a TTA-
node accesses the controlled object exclusively via the field bus, then, there are
two instances of the data sharing CNI interface to service: one to the controlled
object, and the other to the cluster.

CHAPTER 14 THE TIME -TRIGGERED ARCHITECTURE 293

In principle, any operating system that has a handler for the CNI interface can be used
in a TTA-node. If fault-tolerance is implemented by active redundancy, then the host
OS must provide a replicate-determinate service.

Time-Triggered Operating System: A replica-determinate TT operating
system was designed and implemented for the MARS architecture and is available for
the TTA-nodes. This operating system has a data-independent temporal control
structure that is established and tested at compile time. In the design phase the cluster
compiler, described below, coordinates this static temporal control structure with the
arrival and departure times of the messages at the CNI to eliminate all access
conflicts by implicit synchronization. The MARS TT operating system supports the
double and triple (if required) execution of tasks and the end-to-end signatures
specified in the HEDC mode of operation. The API of a time-triggered OS has been
discussed in Section 10.1.

Event-Triggered Operating System: It is possible to execute any ET
operating system in the host, provided it has a handler for the CNI interface. The
concurrency control flags at the CNI can be used to maintain the integrity of the data
exchanged across the CNI between the autonomously operating protocol tasks and the
node tasks in the host. For example, the ERCOS OS that has been presented in
Section 10.5 has been ported to the TTA. The implementation of replica determinism
within an event-triggered OS is an interesting research issue that is currently being
investigated.

Interrupts: If the controlled object requires an immediate reaction from the
computer system (time as control–see Section 9.2.2) within a time interval of less
than 1 msec, then the interrupt mechanism must be used within the node-local
operating system. The issues that must be considered when the control is delegated
outside a node have been discussed in Chapter 9. In systems with interrupts, the
implementation of replica determinism is difficult.

14.3.2 The Cluster Compiler

In the MARS implementation, the Message Descriptor Lists have to be configured
manually. This is a tedious and error-prone task. For TTA, a MEDL generation tool--
called the cluster compiler-- has been developed. The cluster compiler requires the
following inputs:

(i) the data elements that must be exchanged between the nodes,

(ii) the update period and the temporal accuracy requirements of the data elements,

(iii) the sender and receiver nodes of the information exchanges, and

(iv) the redundancy strategy to implement fault-tolerance,

This input is entered into a design database. The input must be produced either by
hand or by some other high-level design tool. The benchmark problem of an
automotive real-time system that has been defined by the SAE provides these input
data as part of the benchmark specification [SAE95].

294 CHAPTER 14 THE TIME-TRIGGERED ARCHITECTURE

The cluster compiler generates the message schedules and tries to make the real-time
images parametric by selecting appropriate update frequencies. At the end it produces
the MEDL for each node [Kop95a].

14.3.3 Testing

The interfaces of a TTA-node are fully defined in the temporal domain and in the
value domain. A test simulator can simulate the external interfaces of a 'ITA-node,
both to the controlled objects and to the RT network. Every TTA-node can be tested
in isolation against this environment simulator and a complete TTP control system
can be tested before it is connected to the actual controlled equipment. Since the
simulator does not require any modification of the software in the tested node, the
probe effect is avoided and the system integration does not change the temporal
behavior at the CNI of a TTA-node.

14.4 FAULT TOLERANCE

One design goal of the TTA is the generic support of fault-tolerant operation without
any modification of the application software. This approach avoids any increase in
the complexity of the application software which is caused by introducing fault-
tolerance.

14.4.1 Fault-Tolerant Units

As explained in Section 6.4, a set of replica-determinate nodes can be grouped into a
fault-tolerant unit (FTU) that will mask a failure of a node of the FTU without any
effect on the external service provided by this FTU. The TTA supports the formation
of FTUs and performs the redundancy management within the TTP controller such
that the CNI to the host computer is not affected by the replication of nodes and
communication channels.

A necessary precondition for the implementation of active redundancy is the replica-
determinate behavior of the host software. The 'ITA provides replica determinism at
the CNI of a node, but it is up to the host software to guarantee replica determinism
within the complete node. If a time-triggered operating system is used, and the
application software in the host is organized into S-tasks (see Section 4.2. 1), then,
the replica determinism of the node software is given.

14.4.2 Redundant Sensors

If the sensors need to be replicated to achieve fault-tolerance, then two separate field
buses must be installed (Figure 14.5). Each one of those field buses is controlled by
one of the TTA-nodes in the FTU. The other node is passive and listens to the field
bus traffic to capture the sensor data.

CHAPTER 14 THE TIME-TRIGGERED ARCHITECTURE 295

Figure 14.5: FTU configuration with replicated field buses.

An agreement protocol is executed in the controller of the TTA-node to reconcile the
values received from the replicated sensors. Then, a single agreed value from each
redundant sensor set is presented to the host software at the CNI.

14.5 WIDE-AREA REAL-TIME SYSTEMS

The Time-Triggered Architecture presented above supports real-time applications that
are located at a single site. There are, however, a number of real-time applications
that cover a wide geographical area, e.g., an electric-power distribution system
covering a large geographical region or an air-traffic control system across an entire
continent. In this section, it is speculated that the emerging ATM technology can be
used to build the wide-area communication system for the TTA.

14.5.1

The Asynchronous Transfer Mode (ATM) technology, briefly introduced in Section
7.3.2, is developed with the following objectives in mind [Vet95]:

(i) It must be cost-effective and scalable.

(ii) It must support applications requiring high bandwidth and low latency.

(iii) It must support multicast operation efficiently.

(iv) It should provide interoperability with existing local- and wide-area networks,
using existing standards and protocols wherever possible.

There are speculations that most of the world's voice and data traffic will be
transmitted by the ATM technology within the next decades [McK94], thus providing
the reliable low-cost wide-area communication services of the future.

The ATM technology supports the construction of a virtual private network on top
of an ATM network [Fot95]. A virtual connection with defined traffic attributes
(bandwidth, delay) between any two endpoints can be established. This connection is
then managed, and further multiplexed by the end users to meet their data
communication needs.

14.5.2 An ATM Gateway

To interconnect TTA systems located at dispersed geographical sites, virtual private
ATM connections with constant guaranteed bandwidth and minimal delay and jitter
must be set up between the sites. The endpoints of these ATM connections are

The Emergence of ATM Technology

296 CHAPTER 14 THE TIME-TRIGGERED ARCHITECTURE

gateway nodes of the local TTA systems. Figure 14.6 depicts the possible
architecture of such an ATM connection between local gateway FTUs.

Figure 14.6: Connection of geographically dispersed TTA sites.

Since the ATM traffic will be relayed via a number of ATM switches, which leads to
an accumulation of the jitter, it is proposed to perform the external clock
synchronization between the dispersed sites outside of the ATM network. The global
time is retrieved from a replicated local GPS receiver at each site. The accuracy of the
GPS time is better than 1 µsec anywhere on earth. The Time-Triggered Protocol as
outlined in Section 8.3 has to be modified to account for the unavoidable delay in a
wide-area network. From the point of view of the local TTP network, the
communication network interface (CNI) to the wide area ATM network is the same
as that to another local node.

POINTS TO REMEMBER

• The time-triggered architecture is based on the vision that a node can be built on
an inexpensive single chip. The system architect is then free to use as many
nodes as necessary to implement the given application requirements within a
clean functional structure.

In the TTA a hardware node is considered a unit of failure with a single external
failure mode: fail-silence.

The TTA is based on a small number of orthogonal concepts that are used over
again to simplify the understanding of a design.

The distributed real-time database, formed by the temporally accurate images of
all relevant RT entities, is at the core of the time-triggered architecture. The real-
time database contains a temporally valid "snapshot" of the current state of the
cluster and the cluster environment.

•

•

•

CHAPTER 14 THE TIME-TRIGGERED ARCHITECTURE 297

• In the time-triggered architecture the communication system controls
autonomously the exchange of information among the nodes and provides the
distributed services for node coordination, such as clock synchronization,
membership, and redundancy management.

The cluster compiler generates the message schedules and tries to make the real-
time images parametric by selecting appropriate update frequencies. At the end it
produces the MEDL for each node

It is proposed to build wide-area time-triggered real-time systems by making use
of the emerging ATM technology.

•

•

BIBLIOGRAPHIC NOTES

The Time-Triggered Architecture evolved out of the MA intainable Real-Time System
project (MARS). MARS was started in 1979 at the Technical University of Berlin.
The first MARS report MA 82/2 "The Architecture of MARS" was published at the
Technical University of Berlin in April 1982. A condensed version of the report was
presented at the 15th Fault-Tolerant Computing Symposium at Ann Arbor, Mich.,
in 1985 [Kop85]. At the time, three important open research issues were identified:
(i) how to implement a precise fault-tolerant internal clock synchronization, (ii) how
to design a real-time communication protocol for the communication among the
nodes, and (iii) how to guarantee the fail-silent property of the nodes. A VLSI chip
for the MARS clock synchronization was subsequently designed and implemented
[Kop87]. This chip was used in the subsequent implementations of the MARS
architecture [Kop89]. The time-triggered protocol TTP for the communication among
the nodes of MARS was published at the FTCS 23 in Toulouse [Kop93]. The
experimental validation of the fail-silent property was one important result of the
ESPRIT Basic Research project PDCS [Kar95]. The PDCS books contains the first
overview of the Time-Triggered Architecture [Kop95b], which is now developed with
generous support from the European automotive industry, and the European
Commission via the Brite Euram project "X-by-Wire", the ESPRIT OMI project
"TTA", Time-Triggered Architecture, and the ESPRIT LTR project "DEVA", Design
for Validation.

This page intentionally left blank.

Annex 1

List of Abbreviations

Note: This annex contains a list of frequently used abbreviations. At the end of each
entry the section of the book that introduces or discusses the term is mentioned in the
parenthesis. Most of the terms expanded in this annex are contained in the glossary
(Annex 2).

ALARP

API Application Program Interface (10.1)

ATM Asynchronous Transfer Mode (7.3.2)

BG Bus Guardian (8.2.1)

C-State Controller State (8.2.2)

C-Task Complex Task (4.2.1)

CAN Control Area Network (7.5.3)

CCF Concurrency Control Field (10.2.2)

CNI Communication Network Interface (2.1.3)

COTS Commercial off the shelve

CRC Cyclic Redundancy Check (6.2.1)

CSU Clock Synchronization Unit (14.1.1)

EDF Earliest -Deadline-First (11.3.1)

EMI Electro-Magnetic Interference (7.6.3)

ET Event-Triggered

FI Fault Injection (12.4.2)

FTA Fault-Tolerant Average (3.4.3)

FTU Fault -Tolerant Unit (6.4)

As Low As Reasonably Practical (12.5)

300 ANNEX 1 ABBREVIATIONS

H-State History State: (4.2.2)

I-State Initialization State (4.2.2)

I/O Input/Output

LL Least-Laxity (11.3.1)

MARS Maintainable Real-Time System (14.1.1)

MEDL Message Descriptor List (8.3.1)

MMI Man-Machine Interface (4.3.1)

NBW Non-Blocking Write (10.2.2)

OLT

PAR Positive-Acknowledgment-or-Retransmission (7.2.1)

RT Real-Time

SOC Sphere of Control (5.1.1)

SRU Smallest Replaceable Unit (1.4.3)

TADL Task Descriptor List (10.1.1)

TAI International Atomic Time (3.1.4)

TDMA Time-Division Multiple Access (7.5.7)

TMR Triple-Modular Redundancy (6.4.2)

TPU Time-Processing Unit (14.2.3)

TT Time Triggered

TTA Time-Triggered Architecture (14.2)

TTP Time-Triggered Protocol (8.1)

TUR Time Unit Response (1 1.4.1)

UART Universal Asynchronous Receiver Transmitter (8.4)

UTC Universal Time Coordinated (3.1.4)

WCAO Worst-case Administrative Overhead (4.4.3)

WCCOM Worst-case Communication Delay (5.4.1)

WCET Worst-case Execution Time(4.5)

Off-line Software Development Tool (10.5.5)

Annex 2

Glossary

Note: All terms that are defined in this glossary are put in italics. At the end of each
entry the section of the book that introduces or discusses the term is mentioned in the
parenthesis.

Absolute Timestamp: An absolute timestamp of an event e is the timestamp of this
event that is generated by the reference clock (3.1.2).

Abstract Message Interface: The abstract message interface is the message interface

between an interface node and the other nodes of a computational cluster (4.3.1).

Accuracy Interval: The maximum permitted time interval between the point of

observation of a real-time entity and the point of use of the corresponding real-

time image (1.2.1).

Accuracy of a Clock: The accuracy of a clock denotes the maximum offset of a given
clock from the external time reference during the time interval of interest
(3.1.3).

Action: An action is the execution of a program or a communication protocol
(4.1.2).

Action Delay: The action delay is the maximum time interval between the start of
sending of a message and the point in time when this message becomes
permanent at the receiver (5.5.1).

Actuator: A transducerthat accepts data and trigger information from an interface node

and realizes an intended effect in the controlled object (9.5).

Agreed Data: An agreed data element is a measured data element that has been checked
for plausibility and related to other measured data , e.g., by the use of model of
the controlled object. An agreed data element has been judged to be a correct
image of the corresponding real-time entity (raw data, measured data) (9.3.1).

302 ANNEX 2 GLOSSARY

Agreement Protocol: An agreement protocol is a protocol that is executed among a
set of nodes of a distributed system to come to a common (agreed) view about
the state of the world, both in the value domain and in the time domain (e.g.,
state of a RT entity, state of the membership) (3.3.1).

Alarm Monitoring: Alarm monitoring refers to the continuous observation of the RT

entities to detect an abnormal behavior of the controlled object (1.2.1).

Alarm Shower: An alarm shower is a correlated set of alarms that is caused by a
single primary event (1 .2.1).

Aperiodic Task: An aperiodic task is a task where neither the task request times are
known nor the minimum time interval between successive requests for
execution (periodic task, sporadic task) (11.2).

Application Program Interface (API): The application program interface is the data
and control interface between an application program and the operating system
(10.1).

Application Specific Fault Tolerance: Fault tolerance mechanisms that are introduced
within the application code (systematic fault tolerance) (6.1.4).

A Priori Knowledge: Knowledge about the future behavior of a system that is
available ahead of time (1.5.5).

ARINC 629 Protocol: A medium access protocol that controls access to a single
communication channel by a set nodes. It is based on a set of carefully selected
time-outs (7.5 .5).

Assumption Coverage: Assumption coverage is the probability that assumptions that
are made in the model building process hold in reality. The assumption

coverage limits the probability that conclusions derived from a model will be
valid in the real world (4.1.1).

Asynchronous Transfer Mode (ATM): The Asynchronous Transfer Mode (ATM) is an
asynchronous communication technology for communication over broadband
networks where the information is organized into constant length cells (48 data
bytes, 5 header bytes) (7.3.2).

Atomic Action: An atomic action is an action that has the all-or-nothing property. It
either completes and delivers the intended result or does not have any effect on
its environment (4.6.2).

Atomic Data Structure: An atomic data structure is a data structure that has to be
interpreted as a whole (5.2.1)

Availability: Availability is a measure of the correct service delivery regarding the
alternation of correct and incorrect service, measured by the fraction of time that
the system is ready to provide the service (1 .4.1).

Babbling Idiot: A node of a distributed computer system that sends messages outside
the specified time interval is called a babbling idiot (6.3.3).

Back-Pressure Flow Control: In back-pressure flow control the receiver of a sequence
of messages exerts back pressure on the sender so that the sender will not
outpace the receiver (7.2.1).

ANNEX 2 GLOSSARY 303

Backbone Network: The backbone network is a non real-time communication
network for the exchange of non time-critical information between the RT

cluster and the data-processing systems of an organization (7.3.3).

Bandwidth: The maximum number of bits that can be transmitted across a channel in
one second (7.5.1)

Benign Failure: A failure is benign if the worst-case failure costs are of the same
order of magnitude as the loss of the normal utility of the system (6.1.1).

Best Effort: A real-time system is a best-effort system if it is not possible to
establish the temporal properties by analytical methods, even if the load- and

fault hypothesis holds (guaranteed timeliness) (1.5.3).

Bit-length of a Channel: The bit length of a channel denotes the number of bits that
can traverse the channel within one propagation delay (7.5.1).

Bus Guardian: The independent hardware unit of a TTP controller that ensures fail

silence in the temporal domain (8.1.2).

Byzantine Error: A Byzantine error occurs if a set of receivers receive different
(conflicting) values about a RT entity at some point in time. Some or all of
these values are incorrect (synonym: malicious error) (3.4.1).

Calibration Point: A point in the domain of an event sensor where the full state of
the RT entity is known for calibration purposes (9.5.2).

Causal Order: A causal order among a set of events is an order that reflects the cause-
effect relationships between the events (3.1.1).

Clock: A clock is a device for time measurement that contains a counter and a
physical oscillation mechanism that periodically generates an event to increase
the counter (3.1.2).

Cluster: A cluster is a subsystem of a real-time system. Examples of clusters are the
real-time computer system, the operator, or the controlled object (1.1).

Cluster Cycle: A cluster cycle of a time-triggered system is the sequence of TDMA

rounds after which the operation of the cluster is repeated. The cluster cycle

determines the length of the MEDL (8.3.1).

Communication Controller: A communication controller is that part of a node that
controls the communication within a distributed system (4.2.2).

Communication Network Interface (CNI): The interface between the communication

controller and the host computer within a node of a distributed system (2.1.3).

Complex Task (C-task): A complex task (C-task) is a task that contains a blocking
synchronization statement (e.g., a semaphore operation wait) within the task

body (4.2.1).

Composability: An architecture is composable regarding a specified property if the
system integration will not invalidate this property, provided it has been
established at the subsystem level (2.2).

Computational Cluster: A subsystem of a real-time system that consists of a single
node or a set of nodes interconnected by a real-time communication network

(1.1).

304 ANNEX 2 GLOSSARY

Concrete World Interface: The concrete world interface is the physical I/O interface

between an interface node and an external device in the cluster environment
(4.3.1).

Concurrency Control Field (CCF): The concurrency control field (CCF) is a single-
word data field that is used in the NBW protocol (10.2.2).

Consistent Failure: A consistent failure occurs if all users see the same erroneous
result in a multi-user system (6.1.1).

Contact Bounce: The random oscillation of a mechanical contact immediately after
closing (9.5.2).

Control Area Network (CAN): The control area network (CAN) is a low-cost event-

triggered communication network that is based on the carrier-sense multiple-
access collision-avoidance technology (7.5.3).

Controlled Object: The controlled object is the industria1 plant, the process, or the
device that is to be controlled by the real-time computer system (1.1).

Controller State (C-State): The controller state of a TTP/C controller consists of the
time, the mode, and the membership (8.2.2).

Convergence Function: The convergence function denotes the maximum offset

within an ensemble of clocks immediately after resynchronization (3.4.1).

Critical Failure: A failure is critical if the cost of the failure can be orders of
magnitude higher than the utility of the system during normal operation
(synonym: malign failure) (safety) (6.1.1).

Cyclic Redundancy Check (CRC) Field: An extra field in a message for the purpose
of detection of value errors (6.2.1).

Data Encoding Technique: The data encoding technique defines the way in which the
logical bits are translated into physical signals on the transmission medium
(7.7).

Deadline: A deadline is the point in time when a result should/must be produced
(soft deadline, firm deadline, and hard deadline) (1.1).

Deadline Interval: The deadline interval is the interval between the task request time

and the deadline (11.2).

Delay Compensation Term: The delay compensation term contains the minimum
delay of a synchronization message containing a time value of a clock. The
delay is measured between the event of reading the clock at the sender and the
timestamping of the arrival of this message at the receiver (3.4.3).

Drift: The drift of a physical clock k between microtick i and microtick i+1 is the
frequency ratio between this clock k and the reference clock at the time of
microtick i. (3.1.2).

Drift Rate: The drift-rate of a clock is | drift – 1 | (3.1.2)

Drift Offset: The drift offset denotes the maximum deviation between any two good
clocks if they are free running during the resynchronization interval (3.1.4).

Duration: A duration is a section of the timeline (3.1.1).

ANNEX 2 GLOSSARY 305

Dynamic Scheduler: A dynamic scheduler is a scheduler that decides at run time after
the occurrence of a significant event which task is to be executed next (1 1.1.1).

Earliest-Deadline-First (EDF) Algorithm: An optimal dynamic preemptive scheduling
algorithm for scheduling a set of independent periodic tasks (11.3.1).

Electro-Magnetic Interference (EMI): The disturbance of an electronic system by
unintentional electromagnetic radiation (7.6.3).

Embedded System: A real-time computer system that is embedded in a well specified
larger system, consisting in addition to the embedded computer system of a
mechanical subsystem and, often, a man-machine interface (intelligent

product) (1.6.1).

End-to-End Protocol: An end-to-end protocol is a protocol between the users residing
at the end points of a communication channel (7.1.4).

Environment of a Computational Cluster: The environment of a given computational

cluster is the set of all clusters that interact with this clusters, either directly or
indirectly (1.1).

Error: An error is that part of the state of a system that deviates from the
specification (6.1.2).

Error-Containment Coverage: Probability that an error that occurs in an error-

containment region is detected at one of the interfaces of this region (2.4.1)

Error-Containment Region: A subsystem of a computer system that is encapsulated
by error-detection interfaces such that the there is a high probability (the error

containment coverage) that the consequences of an error that occurs within this
subsystem will not propagate outside this subsystem without being detected
(2.4.1, 12.1.2).

Error Masking: A mechanism that prevents an error from causing a failure at a higher
level by making immediate use of the provided redundancy (e.g., error correcting
codes, replicated idempotent messages) (4.2.3).

Event: An event is a happening at a cut of the time-line. Every change of state is an
event (3.1.1).

Event Message: A message is an event message if every new version of the message
is queued at the receiver and consumed on reading (state message) (2.1.3).

Event-Triggered (ET) Observation: An observation is event-triggered if the point of

observation is determined by the occurrence of an event other than a tick of a
clock.

Event-Triggered (ET) System: A real-time computer system is event-triggered (ET) if
all communication and processing activities are triggered by an event other than
a clock tick (1.5.5).

Exact Voter: A voter that considers two messages the same if they contain the
exactly same sequence of bits (inexact voter) (6.4.2).

Execution Time: The execution time is the time it takes to execute an action. The
worst-case execution time is called WCET (4.1.2).

306 ANNEX 2 GLOSSARY

Explicit Flow Control: In explicit flow control the receiver sends an explicit
acknowledgment message to the sender, informing the sender that the
previously sent message has correctly arrived and that the receiver is now ready
to accept the next message (flow control, implicit flow control) (7.2.1).

Explicit Synchronization: The dynamic synchronization of tasks by synchronization
statements, such as "WAIT-FOR-EVENT'' (implicit synchronization)
(10.2.1).

External Clock Synchronization: The process of synchronization of a clock with the
reference clock (3.1.3).

Fail-Operational System: A fail-operational system is a real-time system where a safe
state cannot be reached immediately after the occurrence of a failure. An
example of a fail-operational system is a flight-control system without
mechanical or hydraulic back-up onboard an airplane (1 .5.2).

Fail-safe System: A fail-safe system is a real-time system where a safe state can be
identified and quickly reached after the occurrence of a failure (1.5.2).

Fail-Silence: A subsystem is fail-silent if it either produces correct results or no
results at all, i.e., it is quiet in case it cannot deliver the correct service (6.1.1).

Fail-Silent Actuator: A fail-silent actuator is an actuator that either performs the
specified output action or is silent. If it is silent it may not hinder replicated
actuators (9.5.3).

Failure: A failure is an event that denotes a deviation of the actual service from the
specified or intended service (6.1.1).

Fault: A fault is the cause of an error (6.1.3).

Fault Hypothesis: The fault hypothesis identifies the assumptions that relate to the
type and frequency of faults that the computer system is supposed to handle
(4.1.1).

Fault-Tolerant Average Algorithm (FTA): A particular distributed clock
synchronization algorithm that handles Byzantine failures of clocks (3.4.3).

Fault-Tolerant Unit (FTU): A unit consisting of a number of replica determinate

nodes that provides the specified service even if some of its nodes fail (6.4).

Feature Element: The feature element is the smallest geometric element in a
transmission sequence (7.6.2).

Field Bus: A field bus is low cost bus for the interconnection of the sensor and
actuator nodes in the controlled object to a node of the distributed computer
system.

FIP Protocol: The FIP protocol is a field-bus protocol that is based on a central
master station (7.5.6).

Firm Deadline: A deadline for a result is firm if the result has no utility after the
deadline has passed (1.1).

FIT: A FIT is a unit for expressing the failure rate. 1 FIT is 1 failure/10-9 hours.
(1.4.1).

ANNEX 2 GLOSSARY 307

Flow Control; Flow control assures that the speed of the information flow between a
sender and a receiver is such that the receiver can keep up with the sender
(explicit flow control, implicit flow control) (7.2).

Forbidden Region: A time interval during which it is not allowed to schedule a task

that may conflict with another critical task (11.3.2).

Gateway: A node of a distributed real-time system that is a member of two clusters

and implements the relative views of these two interacting clusters (2.1.4).

Global Time: The global time is an abstract notion that is approximated by a
properly selected subset of the microticks of each synchronized local clock of an
ensemble. The selected microticks of a local clock are called the ticks of the
global time. (3.2.1).

Granularity of a Clock: The granularity of a clock is the nominal number of
microticks of the reference clock between two microticks of the clock (3.1.2).

Ground State: The ground state of a node of a distributed system at a given level of
abstraction is a state where no task is active and where all communication
channels are flushed, i.e., there are no messages in transit (4.6.2).

Guaranteed Timeliness: A real-time system is a guaranteed timeliness system if it is
possible to reason about the adequacy of the design without reference to
probabilistic arguments, provided the assumptions about the load- and fault

hypothesis hold (best effort) (1 .5.3).

h-State: The h-state is the dynamic data structure of a task or node that is changed as
the computation progresses. The h-state must reside in read/write memory
(4.6.1).

Hamming Distance: The Hamming distance is one plus the maximum number of bit
errors in a codeword that can be detected by syntactic means (6.2.1).

Hard Deadline: A deadline for a result is hard if a catastrophe can occur in case the
deadline is missed (1.1).

Hard Real-Time Computer System: A real-time computer system that must meet at
least one hard deadline (Synonym: safety-critical real-time computer system .)
(1.1).

Hazard: A hazard is an undesirable condition that has the potential to cause or
contribute to an accident (12.4).

Heartbeat: lifesign

Hidden Channel: A communication channel outside the given computational cluster

(5.5.1).

Host Computer: The host computer (or host) is the computer within a node that
executes the application software (4.2.2).

i-State: The i-state is the static data structure of a node that comprises the reentrant
program code and the initialization data of the node. The i-state can be stored in
a Read-only Memory (4.2.2).

Idempotency : Idempotency is a relation between a set of replicated messages arriving
at the same receiver. A set of replicated messages is idempotent if the effect of

308 ANNEX2 GLOSSARY

receiving more than one copy of a message is the same as receiving only a
single copy (5.5.4).

Implicit Flow Control: In implicit flow control, the sender and receiver agree a

priori, i.e., at system start up, about the points in time when messages will be
sent. The sender commits itself to send only messages at the agreed points in
time, and the receiver commits itself to accept all messages sent by the sender,
as long as the sender fulfills its obligation (explicit flow control, flow

control) (7.2.2).

Implicit Synchronization: The static synchronization of tasks by a priori temporal
control of the task activation (explicit synchronization) (10.2.1).

Inexact Voter: A voter that considers two messages the "same" if both of them
conform to some application specific "sameness" criterion (exact voter) (
(6.4.2).

Instant: An instant is a cut of the timeline (3.1.1).

Instrumentation Interface: The instrumentation interface is the interface between the
real-time computer system and the controlled object (1.1).

Intelligent Actuator: An intelligent actuator consists of an actuator and a processing
unit, both mounted together in a single housing (9.5.4).

Intelligent Product: An intelligent product is a self-contained system that consists of
a mechanical subsystem, a user interface, and a controlling embedded real- time

computer system (embedded system) (1.6.1).

Intelligent Sensor: An intelligent sensor consists of a sensor and a processing unit
such that measured data is produced at the output interface. If the intelligent

sensor is fault-tolerant, agreed data is produced at the output interface (9.5.4).

Interface: An interface is a common boundary between two subsystems (4.3).

Interface Node: A node with an instrumentation interface to the controlled object. An
interface node is a gateway (1.1, 2.1.4).

Internal Clock Synchronization: The process of mutual synchronization of an
ensemble of clocks in order to establish a global time with a bounded precision

(3.1.3).

International Atomic Time (TAI): An international time standard, where the second is
defined as 9 192 631 770 periods of oscillation of a specified transition of the
Cesium atom 133 (3.1.4).

Irrevocable action: An action that cannot be undone, e.g., drilling a hole, activation
of the firing mechanism of a firearm (5.5.1).

Jitter: The jitter is the difference between the maximum and the minimum duration of
an action (processing action, communication action) (4.1.2).

Laxity: The laxity of a task is the difference between the deadline interval minus the
execution time (the WCET) of the task (11.2).

Least-Laxity (LL) Algorithm: An optimal dynamic preemptive scheduling algorithm
for scheduling a set of independent periodic tasks (11.3.1).

ANNEX 2 GLOSSARY 309

Life Sign: A life sign is a periodic signal generated by a computer. The life sign is
monitored by a watchdog . A lifesign is sometimes called a heartbeat (10.4.4)

Load Hypothesis: The load hypothesis specifies the peak load that the computer
system is supposed to handle (4.1.1).

Logical Control: Logical control is concerned with the control flow within a task.

The logical control is determined by the given program structure and the
particular input data to achieve the desired data transformation (temporal

control) (4.4.1).

LON Network: The LON network is a low cost event-triggered communication
network that is based on the carrier-sense multiple-access collision-detection
technology (7.5.3).

Low-Pass Filter: A low-pass filter is a filter, either analog or digital, which passes
all frequencies below a specified value and attenuates all frequencies above that
value (9.5.2).

Maintainability: The Maintainability M(d) is the probability that the system is
restored within a time interval d after a failure (1.4.3).

Major Decision Point: A major decision point is a decision point in an algorithm
that provides a choice between a set of significantly different courses of action
(5.6.1).

Malign Failure: critical failure (1.4.2).

Man-Machine Interface: The man-machine interface is the interface between the real-

time computer system and the operator (1.1).

Measured Data: A measured data element is a raw data element that has been
preprocessed and converted to standard technical units. A sensor that delivers
measured data is called an intelligent sensor (raw data, agreed data) (9.3.1).

Media-Access Protocol: A media-access protocol is a protocol that defines the method
used to assign the single communication channel (bus) to one of the nodes
requesting the right to transmit a message (7.5).

Membership Service: A membership service is a service in a distributed system that
generates consistent information about the operational state (operating or failed)
of all nodes at agreed points in time (membership points). The length and the
jitter of the interval between a membership point and the moment when the
consistent membership information is available at the other nodes are quality of
service parameters of the membership service (5.3.2).

Message Descriptor List (MEDL): The Message Descriptor List (MEDL) is the static
data structure within each TTP controller that determines when a message must
be sent on, or received from, the communication channels (8.3.1).

Microtick: A microtick of a physical clock is a periodic event generated by this clock

(tick) (3.1.2).

Minimum Performance Criteria: The minimum performance criteria establish a
borderline between what constitutes success and what constitutes failure during
the operation of a system (13.2.3).

310 ANNEX 2 GLOSSARY

Minimum Time Between Events (mint): The minimum time between events (mint)
is the minimal interval between two events of the same type (9.4.2).

Mode: A mode is a set of related states of a real-time system. For example, an
airplane can be in taxiing mode or in flying mode. In the temporal domain
different modes are mutually exclusive (6.5.3).

Node: A node is a self-contained computer that performs a well-defined function
within the distributed computer system. A node consists at least of a host

computer (or host) (including the system- and application software) and a
communication controller (4.2.2).

Non-Blocking Wrife Protocol (NBW): The non-blocking write protocol (NBW) is a
synchronization protocol between a single writer and many readers that achieves
data consistency without blocking the writer (10.2.2).

Observation: An observation of a real-time entity is an atomic triple consisting of
the name of the real-time entity, the point in time of the observation, and the
value of the real-time entity (5.2).

Offset: The offset between two events denotes the time difference between these
events 3.1.3).

Parametric RT Image: A RT image is parametric or phase insensitive if the RT

image remains temporally accurate until it is updated by a more recent version
(5.4.2).

Periodic Task: A periodic task is a task that has a constant time interval between
successive task request times (aperiodic task, sporadic task) (11.2).

Permanence: Permanence is a relation between a given message and all messages that
have been sent to the same receiver before this given message has been sent. A
particular message becomes permanent at a given node at the moment when it
is known that all messages have arrived (or will never arrive) that have been
sent to this node before the send time of the particular message (5.5.1).

Phase Sensitive RT Image: A RT image is phase sensitive if the RT image becomes
temporally inaccurate before it is updated by a more recent version (5.4.2).

Phase-Aligned Transaction: A phase-aligned transaction is a real-time transaction

where the constituting processing and communication actions are tightly
synchronized (5.4.1).

Point of Observation: The moment when a real-time entity is observed (1.2.1).

Polling: In polling, the state of a RT entity is periodically interrogated by the
computer system at points in time that are in the sphere of control of the
computer system. If a memory element is required to store the effect of an
event, the memory element is inside the sphere of control of the computer
system (sampling) (9.3).

Positive-Acknowledgment-or-Retransmission (PAR) protocol: The Positive-

Acknowledgment-or-Retransmission (PAR) protocol is an event-triggered
protocol where a message sent by the sender must be positively acknowledged
by the receiver (7.2.1).

ANNEX 2 GLOSSARY 311

Precision: The precision of an ensemble of clocks denotes the maximum offset of
respective ticks of any two clocks of the ensemble over the period of interest.
The precision is expressed in the number of ticks of the reference clock (3.1.3).

Primary Event: A primary event is the cause of an alarm shower (1.2.1).

Priority Ceiling Protocol: A scheduling algorithm for scheduling a set of dependent
periodic tasks (11.3.3).

Priority Inversion: Priority inversion refers to a situation, where a high priority task
is directly or indirectly blocked by a low priority task that has exclusive access
to a resource (11.3.3).

Process: The execution of a program (synonym to action) (see also task)
(10.2.1).

Process Lag: The delay between applying a step function to an input of a controlled

object and the start of response of the controlled object (1.3.1).

Propagation Delay The propagation delay of a communication channel denotes the
time interval it takes for a single bit to traverse the channel (7.5.1).

Protocol: A protocol is a set of rules that governs the communication among
partners (1.7.1).

Rare Event: A rare event is a seldom occurring event that is of critical importance. In
a number of applications the predictable performance of a real-time computer

system in rare event situations is of overriding concern (1.2.1).

Rate-Monotonic Algorithm: A dynamic preemptive scheduling algorithm for
scheduling a set of independent periodic tasks (11.3.1).

Raw Data: A raw data element is an analog or digital data element as it is delivered
by an unintelligent sensor (measured data, agreed data) (9.3.1).

Real-Time (RT) Entity: A real-time (RT) entity is a state variable, either in the
environment of the computational cluster, or in the computational cluster itself,
that is relevant for the given purpose. Examples of RT entities are: the
temperature of a vessel, the position of a switch, the setpoint selected by an
operator, or the intended valve position calculated by the computer (1.2.1, 5.1).

Real-Time (RT) Image: A real-time (RT) image is a current picture of a real-time

entity (1.2.1, 5.3.1).

Real-Time Communication Network: A real-time communication system within a
cluster that provides all services needed for the timely and dependable
transmission of data between the nodes (7.3.3).

Real-Time Computer System: A real-time computer system is a computer system, in
which the correctness of the system behavior depends not only on the logical
results of the computations, but also on the physical time when these results
are produced. A real-time computer system can consist of one or more
computational clusters (1.1).

Real-Time Data Base: The real-time data base is formed by the set of all temporally

accurate real-time images (1.2.1).

312 ANNEX 2 GLOSSARY

Real-Time Object: A real-time (RT) object is a container inside a computer for a RT

entity or a RT image. A clock with a granularity that is in agreement with the
dynamics of the RT object is associated with every RT object (5.3.2).

Real-Time Transaction: A real-time (RT) transaction is a sequence of communication
and computational actions between a stimulus from the environment and a
response to the environment of a computational cluster (1.7.3).

Reasonableness Condition: The reasonableness condition of clock synchronization
states that the granularity of the global time must be larger than the precision

of the ensemble of clocks (3.2.1).

Reference Clock: The reference clock is an ideal clock that ticks always in perfect
agreement with the international standard of time (3.1.2).

Reliability: The reliability R(t) of a system is the probability that a system will
provide the specified service until time t, given that the system was operational
at t = to. (1.4.1).

Replica Determinism: Replica Determinism is a desired relation between replicated

RT objects. A set of replicated RT objects is replica determinate if all objects of
this set have the same visible external h-state and produce the same output
messages at points in time that are at most an interval of d time units apart
(5.6).

Resource Adequacy: A real-time computer system is resource adequate if there are
enough computing resources available to handle the specified peak load and the
faults specified in the fault hypothesis. Guaranteed response systems must be
based on resource adequacy (guaranteed timeliness) (1.4.5).

Resource Controller: A resource controller is a computational unit that controls a
resource, hides the concrete world interface of the resource, and presents a
standard abstract message interface to the clients of the resource (4.3.10).

Rise Time: The rise time is the time required for the output of a system to rise to a
specific percentage of its final equilibrium value as a result of step change on
the input (1.3.1).

Risk: Risk is the product of hazard severity and hazard probability. The severity of a
hazard is the worst-case damage of a potential accident related to the hazard.

(12.4).

Safety: Safety is reliability regarding critical failure modes (1.4.2).

Safety Case: A safety case is a combination of a sound set of arguments supported by
analytical and experimental evidence substantiating the safety of a given system

Safety Critical Real-Time Computer System: Synonym to hard real-time computer

system (1.1).

Sampling: In sampling, the state of a RT entity is periodically interrogated by the
computer system at points in time that are in the sphere of control of the
computer system. If a memory element is required to store the effect of an
event, the memory element is outside the sphere of control of the computer
system (polling) (9.3).

(12.1).

ANNEX 2 GLOSSARY 313

Schedulability Test: A schedulability test determines whether there exists a schedule
such that all tasks of a given set will meet their deadlines (1 1.1.2).

Scheduler: A software module, normally in the operating system, that decides which
task will be executed at a particular point in time (11.1).

Semantic Agreement: An agreement is called semantic agreement if the meanings of
the different measured values are related to each other by a process model that is
based on a priori knowledge about the physical characteristics of the controlled

object (9.2.3).

Setpoint: A setpoint is an intended value for the position of an actuator or the
intended value of a real-time entity (1.2.2).

Shadow Node: A shadow node is a node of a Fault-Tolerant Unit that receives input
messages but does not produce output messages as long as the redundant nodes
of the FTU are operational (6.4.1).

Signal Conditioning: Signal conditioning refers to all processing steps that are
required to generate a measured data element from a raw data element. (1.2.1).

Smallest Replaceable Unit (SRU): A smallest replaceable unit is a subsystem that is
considered atomic from the point of view of a repair action (1.4.3).

Soft Deadline: A deadline for a result is soft if the result has utility even after the
deadline has passed (1.1).

Soft Real-Time Computer System: A real-time computer system that is not
concerned with any hard deadline (1.1).

Sphere of Control (SOC): The sphere of control of a subsystem is the set of RT

entities the values of which are established within this subsystem (5.1.1).

Sporadic Task: A sporadic task is a task where the task request times are not known
but where it is known that a minimum time interval exists between successive
requests for execution (periodic task, aperiodic task) (11.2).

State Estimation: State estimation is the technique of building a model of a RT

entity inside a RT object to compute the probable state of a RT entity at a
selected future point in time, and to update the related RT image accordingly

State Message: A message is a state message if a new version of the message
replaces the previous version, and the message is not consumed on reading
(event message) (2.1.3).

Synchronization Condition: The synchronization condition is a necessary condition
for the synchronization of clocks. It relates the convergence function, the drift

offset and the precision (3.4.1).

Syntactic Agreement: An agreement is called syntactic agreement if the agreement
algorithm computes the agreed value without considering the semantics of the
measured values (9.3.2).

Systematic Fault Tolerance: Fault tolerance mechanisms that are introduced at the
architecture level, transparent to the application code (application specific

fault tolerance) (6.1.4).

(5.4.3).

314 ANNEX 2 GLOSSARY

Task Descriptor List (TADL): The task descriptor list (TADL) is a static data
structure in a time-triggered operating systems that contains the points in time
when the tasks have to be dispatched (10.1.1).

Task Request Time: The task request time is the point in time when a task becomes
ready for execution (11.2).

Task: A task is the execution of a sequential program (simple task, complex

task) (4.2.1).

TDMA Round: A TDMA round is a complete transmission round in a TDMA

system (7.5.7).

Temporal Accuracy: A real-time image is temporally accurate if the time interval
between the moment "now" and point in time when the current value of the
real-time image was the value of the corresponding RT entity is smaller than an
application specific bound (5.4).

Temporal Control: Temporal control is concerned with the determination of the
points in time when a task must be activated or when a task must be blocked
because some conditions outside the task are not satisfied at a particular
moment (logical control) (4.4.1).

Temporal Order: The temporal order of a set of events is the order of events as they
occurred on the time line (3.1.1).

Thrashing: The phenomenon that a system's throughput decreases abruptly with
increasing load is called thrashing (7.2.3).

Tick: A tick (synonym: macrotick) of a synchronized clock is a specially selected
microtick of this clock. The offset between any two respective ticks of an
ensemble of synchronized clocks must always be less than the precision of the
ensemble (microtick, reasonableness condition) (3.2.1).

Time Stamp: A timestamp of an event with respect to a given clock is the state of
the clock at the point of time of occurrence of the event (3.1.2).

Time-Division Multiple Access (TDMA): Time-Division Multiple Access is a time-
triggered communication technology where the time axis is statically
partitioned into slots. Each slot is statically assigned to a node. A node is only
allowed to send a message during its slot (7.5.7).

Time-Triggered (TT) Observation: An observation is time-triggered if the point of

observation is triggered by a tick of the global time (4.4.2).

Time-Triggered Protocol (TTP): A communication protocol where the point in time
of message transmission is derived from the progression of the global time
(8.1).

Time-Triggered System: A real-time system is time-triggered (TT) if all
communication and processing activities are initiated at predetermined points in
time at an a priori designated tick of a clock.

Timed Message: A timed message is a message that contains the timestamp of an
event (e.g., point of observation) in the data field of the message (9.1.1).

ANNEX 2 GLOSSARY 3 15

Timing Failure: A timing failure occurs when a value is presented at the system-user
interface outside the specified interval of real-time. Timing failures can only
exist if the system specification contains information about the expected
temporal behavior of the system (6.1.1).

Token Bus: A bus based communication system where the right to transmit is
contained in a token that is passed among the communicating partners (7.5.4).

Transducer: A device converting energy from one domain into another. The device can
either be a sensor or an actuator (9.5)

Transient Error: A transient error is an error that exists only for a short period of time
after which it disappears (6.1.2).

Transient Fault: A transient fault is a fault that exists only for a short period of time
after which it disappears (6.1.3).

Trigger: A trigger is an event that causes the start of some action (1.5.5).

Trigger Task: A trigger task is a time-triggered task that evaluates a condition on a
set of temporally accurate real-time variables and generates a trigger for an
application task (4.4.4).

Triple-Modular Redundancy (TMR): A fault-tolerant system configuration where a
fault-tolerant unit (FTU) consists of three synchronized nodes. A value failure
of one node can be masked by the majority (voting) (6.4.2).

Universal Asynchronous Receiver Transmitter (UART): A standardized low cost
communication controller for the transmission/reception of asynchronous bytes,
encoding a single byte into a 10 bit or 11 bit mark/space format (one start bit,
eight data bits, one optional parity bit, and one stop bit) (8.4).

Universal Time Coordinated (UTC): An international time standard that is based on
astronomical phenomena (International Atomic Time) (3.1.4).

Value Failure: A value failure occurs if an incorrect value is presented at the system-
user interface (6.1.1).

Voter: A voter is a unit that detects and masks errors by accepting a number of
independently computed input messages and delivers an output message that is
based on the analysis of the inputs (exact voting, inexact voting) (6.4.2).

Watchdog: A watchdog is an independent external device that monitors the operation
of a computer. The computer must send a periodic signal (life sign) to the
watchdog. If this life sign fails to arrive at the watchdog within the specified
time interval, the watchdog assumes that the computer has failed and takes
some action (e.g., the watchdog forces the controlled object into the safe state)
(1 .5.2, 10.4.4).

Worst-case Administrative Overhead (WCAO): The worst-case execution time of the
administrative services provided by an operating system (4.4.3).

Worst-case Communication Delay (WCCOM): The worst-case communication delay

is the maximum duration it may take to complete a communication action
under the stated load- and fault hypothesis (5.4.1).

316 ANNEX 2 GLOSSARY

Worst-case Execution Time (WCET): The worst-case execution time (WCET) is the
maximum duration it may take to complete an action under the stated load- and

fault hypothesis, quantified over all possible input data (4.5).

References

[Agn91] Agne, R. (1991). Global Cyclic Scheduling: A Method to Guarantee the
Timing Behavior of Distributed Real-Time Systems. Real-Time Systems.

Ahuja, M., Kshemkalyani, A. D., & Carlson, T. (1990). A Basic Unit of
Computation in a Distributed System. 10th IEEE Distributed Computer
Systems Conference. IEEE Press. (pp. 12-19).

Anderson, J., Ramamurthy, S., & Jeffay, K. (1995). Real-Time Computing
with Lock-Free Shared Objects. Proc. Real-Time Systems Symposium. Pisa,
Italy. IEEE Press. (pp. 28-37).

ARINC (1991). Multi-Transmitter Data Bus ARINC 629--Part 1: Technical
Description. Aeronautical Radio Inc., Annapolis, Maryland 21401.

ARINC (1992). Software Considerations in Airborne Systems and Equipment
Certification. Document RTCA/DO- 178B. ARINC, Annapolis, Maryland
21401.

[Avi78] Avizienis, A. (1978). Fault-Tolerance, The Survival Attribute of Digital
Systems. Proc. of the IEEE. Vol. 66 (10). (pp. 1109-1125).

[Avi85] Avizienis, A. (1985). The N-version Approach to Fault-Tolerant Systems.
IEEE Trans. on Software Engineering. Vol. 11 (12). (pp. 1491-1501).

[Avi96] Avizienis, A. (1996). Systematic Design of Fault-Tolerant Computers.
Safecomp 96. Vienna, Austria. Springer Verlag. (pp. 3-20).

[Avr92] Aversky, D., Arlat, J., Crouzet, Y., & Laprie, J. C. (1992). Fault Injection
for the Formal Testing of Fault Tolerance. Proc. of the 22nd Fault-Tolerant
Computing Symposium. IEEE Press. (pp. 345-354).

Babaoglu, O. (1987). On the Reliability of Consensus-Based Fault-Tolerant
Distributed Computing Systems. ACM Trans. on Computer Systems. Vol. 5

Bannister, B. R., & Whitehead, D. G. (1986). Transducers and Interfacing,
Principles and Techniques. VanNostrand Reinhold. Berkshire, U.K.

Vol. 3 (1). (pp. 45-66).

[Ahu90]

[And95]

[ARI91]

[ARI92]

[Bab87]

(3). (pp. 394-416).

[Ban86]

318 REFERENCES

[Bel92] Bell, D., Cox, L., Jackson, S, & Schaefer, P. (1992). Using Causal Reason-
ing for Automated Failure Mode and Effect Analysis. Proc. Annual
Reliability and Maintability Symposium. IEEE Press. (pp. 343-353).

Berry, G., & Cosserat, L. (1985). The Synchronous Programming Language
ESTEREL and its Mathematical Semantics. Proc. of the Seminar on
Concurrency (LNCS 197). Springer-Verlag.

Bourgonjon, R. H. (1995). The Evolution of Embedded Software in Con-
sumer Products In: B. Randell (Ed.), The Future of Software. The University
of Newcastle upon Tyne. (pp. 1.3-I.35).

Boussinot, F., & Simone, R. (1996). The SL Synchronous Language. IEEE
Trans. on Software Engineering. Vol. 22 (4). (pp. 256-266).

Brilliant, S., Knight, J., & Leveson, N. (1989). The Consistent Comparison
Problem in N-Version Software. IEEE Trans. on Software Engineering. Vol.

Burns, A,, & Wellings, A. J. (1989). Real-Time Systems and Their Pro-
gramming Languages. Addison Wesley.

Burns, A., & Welling, A. (1996). Advanced Fixed Priority Scheduling In: J.
Mathai (Ed.), Real-Time Systems. Prentice Hall. London. (pp. 32-65).

Butler, R. W., & Finelli, G. B. (1993). The Infeasibility of Quantifying the
Reliablility of Life-Critical Real-Time Software. IEEE Trans. on Software
Engineering. Vol. 19 (1). (pp. 3-12).

CAN (1990). Controller Area Network CAN, an In-Vehicle Serial Com-
munication Protocol In: SAE Handbook 1992. SAE Press. (pp. 20.341-
20.355).

Cheng, S. C. (1987). Scheduling Algorithms for Hard Real-Time Systems--A
Brief Survey In: J. A. Stankovic (Ed.), Hard Real-Time Systems. IEEE
Press. Los Angeles.

Courtois, P.-J. (1985). On Time and Space Decomposition of Complex
Structures. Comm. ACM. Vol. 28 (6). (pp. 590-603).

Couvillion, J. A., Freire, R., Johnson, R., Obdal II, W. D., Qureshi, M. A.,
Rai, M., Sanders, W. H., & Tvedt, J. E. (1991). Performability Modeling
with UltraSAN. IEEE Software. Vol.: 8 (5). (pp. 69-80).

[Cri89] Cristian, F. (1989). Probabilistic Clock Synchronization. Distributed Com-
puting. Vol. 3 (Springer Verlag). (pp. 146-185).

[Cri91] Cristian, F. (1991). Understanding Fault-Tolerant Distributed Systems.
Comm. ACM. Vol. 34 (2). (pp. 57-78).

[Dav79] Davies, C. T. (1979). Data Processing Integrity In: B. Randell & T.
Anderson (Ed.), Computing Systems Reliability. Cambridge University
Press. (pp. 288-354).

Driel, C. L., Follon, R. J. B., Kohler, A. A. C., Osch, R. P. M., & Spanjers,
J. M. (1990). The Error-Resistant Interactively Consistent Architecture
(ERICA). Proc. FTCS 20. IEEE Press. (pp. 474-480).

Ebert, R. E. (1994). User Interface Design. Prentice Hall, Inc. Englewood
Cliffs, NJ.

Fagan, M. E. (1986). Advances in Software Inspections. IEEE Trans. on
Software Engineering. Vol. SE-12 (7). (pp. 744-751).

[Ber85]

[Bou95]

[Bou96]

[Bri89]

15 (11). (pp. 1481-1485).

[Bur89]

[Bur96]

[But93]

[CAN90]

[Che87]

[Cou85]

[Cou91]

[Dri90]

[Ebe94]

[Fag86]

REFERENCES 319

FIP (1994). The FIP Protocol In: World FIP Europe, 3 Rue de Salpetiere,
5400 Nancy, France.

Fohler, G. (1994). Flexibility in Statically Scheduled Hard Real-Time
Systems. PhD Thesis, Technical University of Vienna.

Fohler, G. (1995). Joint Scheduling of Distributed Complex Periodic and
Hard Aperiodic Tasks in Statically Scheduled Systems. IEEE Real-Time
Systems Symposium. Pisa, Italy. IEEE Press. (pp. 152-161).

[Fot95] Fotedar, S., Gerla, M., Crocetti, P., & Fratta, L. (1995). ATM Virtual Private
Networks. Comm. ACM. Vol. 38 (2). (pp. 101-108).

[Fuc96] Fuchs, E. (1996). Software Implemented Fault Injection. PhD Thesis,
Technical University of Vienna/182, A 1040 Vienna, Treitlstrasse 3.

[Fur89] Furth, B., Parker, J., & Grostick, D. (1989). Performance of Real/lX--A
Fully Preemptive Real-Time UNIX. Operating System Review. Vol.: 23 (4).

[Gar75] Garey, M. R., & Johnson, D. S. (1975). Complexity Results for
Multiprocessor Scheduling under Resource Constraints. SIAM Journal of
Computing. Vol. 4 (4). (pp. 397-41 1).

[Geb88] Gebman, J., McIver, D., & Schulman, H. (1988). Maintenance Data on the
Fire-Control Radar. Proc. of the AIAA Avionics Conference. San Jose, Cal.

[Gei91] Geist, R., & Trivedi, K. (1991). Reliability Estimation of Fault-Tolerant
Systems: Tools and Techniques. Computer. Vol. 23 (7). (pp. 52-61).

[Gos91] Goscinski, A. (1991). Distributed Operating Systems. Addison-Wesley.
Sydney, Australia.

[Gra94] Gray, J., & Reuter, A. (1993). Transaction Processing: Concepts and
Techniques. Morgan Kaufmann. San Francisco, California.

[Greg93] Greenspring (1993). Industry Pack Logic Interface Specification
Greenspring Computers, 1204 O'Brien Dirve, Menlo Park, CA, 94025.

[Haa81] Haase, V. (1981). Real-Time Behavious of Programs. IEEE Trans. on
Software Engineering. Vol. SE-7 (5). (pp. 451-509).

[Hal92] Halbwachs, N. (1992). Synchronous Programming of Reactive Systems.
Kluwer Academic Press.

[Har88] Harper, R. E., Lala, J. H., & Deyst, J. J. (1988). Fault-Tolerant Parallel
Processor Architecture Overview. Proc. FTCS 18. IEEE Press. (pp. 252-
257).

[Hea95] Healy, C. A., Whalley, D. B., & Harmon, M. G. (1995). Efficient
Microarchitecture Modeling and Path Analysis for Real-Time Software.
Proc. 16th RTSS. Pisa Italy. IEEE Press. (pp. 288-297).

Hix, D., & Hartson, H.R. (1993). Developing User Interfaces: Ensuring
Usability through Product and Process. John Wiley and Sons, Inc. New
York, N.Y.

Hopkins, A. L., Smith, T. B., & Lala, J. H. (1978). FTMP: A Highly
Reliable Fault-Tolerant Multiprocessor for Aircraft Control. Proc. IEEE.

[How87] Howden, B. (1987). A Functional Approach to Program Testing and
Analysis. McGraw-Hill. New York.

[IEC95] IEC 1508 (1995). International Electrotechnical Commission (IEC) Standard
1508

[FIP94]

[Foh94]

[Foh95]

[Hix93]

[Hop78]

Vol. 66 (10). (pp. 1221-1239).

320 REFERENCES

[IEC96] IEC 601 -1-4, (1996). Medical Electrical Equipment, General Requirements
for Safety, Collateral Standard: Programmable Electrical Medical Systems.
International Electrotechnical Commission.

[IFA95] IFAC (1995). Proceedings of the Distributed Computing Systems
Workshop. International Federation of Automatic Control (IFAC).

[Iha82] Ihara, H., & Mori, K. (1982). Highly Reliable Loop Computer Network
System Based on Autonomous Decentralization Concept. Proc. 12th Fault-
Tolerant Computing Symposium. IEEE Press. (pp. 187-194).

Ihara, H., & Mori, K. (1984). Autonomous Decentralized Computer Control
Systems. IEEE Computer. Vol. (August 1984). (pp. 57-66).

Jahainan, F., & Mok, A. K. (1986). Safety Analysis of Timing Properties in
Real-Time Systems. IEEE Trans. on Software Engineering. Vol. 12 (9). (pp.

[Jal94] Jalote, P. (1994). Fault Tolerance in Distributed Systems. Prentice Hall.
Englewood Cliffs, N.J.

[Joh89] Johnson, B. (1989). Design and Analysis of Fault-Tolerant Digital Systems.
Addison Wesley. Reading, Mass. USA.

[Joh92] Johnson, S. C., & Butler, R. W. (1992). Design for Validation. IEEE
Aerospace and Electronic Systems Magazine. Vol. 7 (1). (pp. 38-43).

[Jon78] Jones, J., C. (1978). Design Methods, Seeds of Human Futures. John Wiley.
London.

[Kan95a] Kantz, H., & Koza, C. (1995). The ELECTRA Railway Signalling-System:
Field Experience with an Actively Replicated System with Diversity. Proc.
FTCS 25. Los Angeles. IEEE Press. (pp. 453-458).

Kanawati, G. A., Kanawati, N. N., & Abraham, J. A. (1995). FERRARI: A
Flexible Software-based Fault and Error Injection System. IEEE Trans.
Computers. Vol. 44 (2). (pp. 248-260).

Kanekawa, N., Nohmi, M., Satoh, Y., & Satoh, H. (1996). Self-checking
and Fail-safe LSIs by Intra-Chip Redundancy. Proc. FTCS 26. Sendai,
Japan. (pp. 426-430).

Karlsson, J., Folkesson, P., Arlat, J., Crouzet, Y., & Leber, G. (1995).
Integration and Comparison of Three Physical Fault Injection Techniques.
In: B. Randell, J. L. Laprie, H. Kopetz, & B. Littlewood (Ed.), Predictably
Dependable Computing Systems. Springer Verlag. Heidelberg. (pp. 309-
327).

[Iha84]

[Jah86]

890-904).

[Kan95]

[Kan96]

[Kar95]

[Kav92] Kavi, K. M. (Ed.). (1992). Real-Time Systems. IEEE Press.

[Kie88] Kiekhafer, R. M., Walter, C. J., Finn, A. M., & Thambidurai, P. M. (1988).
The MAFT Architecture for Distributed Fault Tolerance. IEEE Trans. on
Computers. Vol.: 37 (4). (pp. 398-405).

Kim, K. H., & Kopetz, H. (1994). A Real-Time Object Model RTO.k and an
Experimental Investigation of its Potential. Proc. COMPSAC 94 Taipei.
IEEE Press.

Kim, B. G., & Wang, P. (1995). ATM Networks: Goals and Challenges.
Communication of the ACM. Vol. 38 (2). (pp. 39-44).

Kligerman, E., & Stoyenko, A. D. (1986). Real-Time Euclid: A Language for
Reliable Real-Time Systems. IEEE Trans. on Software Engineering. Vol. 12

[Kim94]

[Kim95]

[Kli86]

(9). (pp. 941-949).

REFERENCES 321

Knight, J. C., & Leveson, N. G. (1986). An Experimental Evaluation of the
Assumption of Independence in Multiversion Programming. IEEE Trans.
Software Engineering. Vol. SE-12 (1). (pp. 96-109).

Kopetz, H. (1982). The Failure-Fault Model. Proc. FTCS 12. IEEE Press.
(pp. 14-17).

Kopetz, H., & Merker, W. (1985). The Architecture of MARS. Proc. 15th
IEEE Int. Symp. on Fault-Tolerant Computing (FTCS-15). Ann Arbor,
Mich. (pp. 274-279). This is a condensed version of the Research Report
No. MA 82/2 The Architecture of MARS that appeared in April 1992 at the
Technical University of Berlin.

[Kop87] Kopetz, H., & Ochsenreiter, W. (1987). Clock Synchronisation in
Distributed Real-Time Systems. IEEE Trans. Computers. Vol. 36 (8). (pp.

Kopetz, H., Damm, A., Koza, C., Mulazzani, M., Schwabl, W., Senft, C., &
Zainlinger, R. (1989). Distributed Fault-Tolerant Real-Time Systems: The
MARS Approach. IEEE Micro. Vol. 9 (1). (pp. 25-40).

Kopetz, H., Kantz, H., Grünsteidl, G., Puschner, P., & Reisinger, J. (1990).
Tolerating Transient Faults in MARS. Proc. 20th Int. Symp. on Fault-
Tolerant Computing (FTCS-20). Newcastle upon Tyne, UK. (pp. 466-473).

Kopetz, H., & Kim, K. (1990). Temporal Uncertainties in Interactions
among Real-Time Objects. Proc. 9th Symposium on Reliable Distributed
Systems. Huntsville, AL, USA. IEEE Computer Society Press. (pp. 165-
174).

[Kop91] Kopetz, H., Grunsteidl, G., & Reisinger, J. (1991). Fault-Tolerant
Membership Service in a Synchronous Distributed Real-Time System In: A.
Avizienis & J. C. Laprie (Ed.), Dependable Computing for Critical
Applications. Springer-Verlag. (pp. 411-429).

Kopetz, H. (1992). Sparse Time versus Dense Time in Distributed Real-Time
Systems. Proc. 14th Int. Conf. on Distributed Computing Systems.
Yokohama, Japan. IEEE Press. (pp. 460-467).

Kopetz, H., & Gruensteidl, G. (1993). TTP - A Time-Triggered Protocol for
Fault-Tolerant Real-Time Systems. Proc. 23rd IEEE International
Symposium on Fault-Tolerant Computing (FTCS-23). Toulouse, France.
IEEE Press. (pp. 524-532), appeared also in a revised version in IEEE
Computer. Vol. 24 (1). (pp. 22-66).

Kopetz, H. (1993). Should Responsive Systems be Event-Triggered or Time-
Triggered? IEICE Trans. on Information and Systems Japan (Special Issue
on Responsive Computer Systems). Vol. E76-D(11). (pp.1325-1332).

[Kop93c] Kopetz, H., & Reisinger, J. (1993). The Non-Blocking Write Protocol
NBW: A Solution to a Real-Time Synchronisation Problem. Proc. 14th
Real-Time Systems Symposium. Raleigh-Durham, North Carolina.

Kopetz, H. (1994). A Solution to an Automotive Control System System
Benchmark. Proc. 15th IEEE Real-Time Systems Symposium. Puerto Rico.
IEEE Press. (pp. 154-158).

Kopetz, H., Nossal, R., (1995). The Cluster Compiler--A Tool for the
Design of Time-Triggered Real-Time Systems. Proc. of ACM SIGPLAN
Workshop on Languages, Compilers and Tools for Real-Time Systems, La
Jolla, California, June 1995.

[Kni86]

[Kop82]

[Kop85]

93 3 -940).

[Kop89]

[Kop90a]

[Kop90b]

[Kop92]

[Kop93a]

[Kop93b]

[Kop94]

[Kop95a]

322 REFERENCES

[Kop95b] Kopetz, H. (1995). The Time-Triggered Approach to Real-Time System
Design In: B. Randell, J. L. Laprie, H. Kopetz, & B. Littlewood (Ed.),
Predictably Dependable Computing Systems. Springer Verlag. Heidelberg,

Kopetz, H. (1995). TTP/A -- A Time-Triggered Protocol of Body Electronics
Using Standard UARTS. Proc. SAE World Congress. Society of Automotive
Engineers, SAE Technical Paper 950039. (pp. 1-9).

Kopetz, H., Hexel, R., Krueger, A., Millinger, D., & Schedl, A. (1995). A
Synchronization Strategy for a Time-Triggered Multicluster Real- Time
System. Proc., 14th Symp. on Reliable Distributed Systems. Bad Neuenahr,
Germany. IEEE Press. (pp. 154-161).

Kopetz (1 995). A Communication Infrastracture for a Fault-Tolerant Real-
Time System. Control Engineering Practice-- A Journal of IFAC. Vol. 3 (8).

Kopetz, H. (1996). A Node as a Real-Time Object. Proc. of the IEEE
Workshop on Object Oriented Real-Time Systems. Laguna Beach, Cal. IEEE
Press. (pp. 2-8).

Lala, J. H., & Harper, R. E. (1994). Architectural Principles for Safety-
Critical Real-Time Applications. Proc. of the IEEE. Vol. 82 (1). (pp. 25-
40).

Lamport, L. (1974). A New Solution of Dijkstra's Concurrent Programming
Problem. Comm. ACM. Vol. 8 (7). (pp. 453-455).

Lamport, L. (1978). Time, Clocks, and the Ordering of Events. Comm.

Lamport, L. (1984). Using Time instead of Time-outs for Fault-Tolerant
Distributed Systems. ACM Trans. on Programming Languages and Systems.

Lamport, L., & Melliar-Smith, P. M. (1985). Synchronizing Clocks in the
Presence of Faults. Journal Ass. Comp. Mach. Vol. 21. (pp. 52-78).

Laprie, J. C. (Ed.). (1992). Dependability: Basic Concepts and Terminology
- in English, French, German, German and Japanese. Springer-Verlag.
Vienna, Austria.

Laprie, J. C., Arlat, J., Beounes, C., & Kanoun, K. (1995). Definition and
Analysis of Hardware and Software Fault-Tolerant Architectures In: B.
Randell, J. C. Laprie, H. Kopetz, & B. Littlewood (Ed.), Predictably
Dependable Computing Systems. Springer Verlag. Heidelberg. (pp. 103-
122).

Lawson, H. W. (1992). Cyclone - An Approach to the Engineering of
Resource Adequate Cyclic Real-Time Systems. Real-Time Sytems. Vol. 4

Lee, P., A., & Anderson, T., (1990). Fault Tolerance: Principles and Prac-
tice. Springer Verlag. Vienna.

LeLann, G. (1990). Critical Issues for the Development of Distributed Real-
Time Computing Systems. Proc. of the Second IEEE Workshop on Future
Trends in Distributed Computing. IEEE Press. (pp. 96-105).

Leveson, N. G. (1995). Safeware: System Safety and Computers. Addison
Wesley Company. Reading, Mass.

(pp. 53-66).

[Kop95c]

[Kop95d]

[Kop95e]

(pp. 1139-1146).

[Kop96]

[Lal94]

[Lam74]

[Lam78]

[Lam84]

ACM. Vol. 21 (7). (pp. 558-565).

Vol. 6 . (pp. 254-280).

[Lam85]

[Lap92]

[Lap95]

[Law92]

(1). (pp. 55-84).

[Lee90]

[LeL90]

[Lev95]

REFERENCES 323

Li, Y. T. S., Malik, S., & Wolfe, A. (1995). Efficient Microarchitecture
Modeling and Path Analysis for Real-Time Software. Proc. of the 16th
RTSS. Pisa, Italy. IEEE Press. (pp. 298-307).

[Lim94] Lim, S. S. (1994). An Accurate Worst-case Timing Analysis for RISC
Processors. Real-Time Systems Symposium RTSS 94. San Juan, Puerto
Rico. IEEE Computer Society. (pp. 97-108).

[Lin96] Lin, K. J., & Herkert, A. (1996). Jitter Control in Time-Triggered Systems.
Hawaii Conf. on System Science. (pp. 451-459).

[Lio96] Lions, J. L. (1996). Ariane 5--Flight 501 Failure. www.esrin.esa.it./
htdocs/tidc/Press/Press96/ariane5rep. html.

[Lit951 Littlewood, B., & Strigini, L. (1995). Validation of Ultradependability for
Software Based Systems In: B. Randell, J. L. Laprie, H. Kopetz, & B.
Littlewood (Ed.), Predictably Dependable Computing Systems. Springer
Verlag. Heidelberg. (pp. 473-493).

[Liu73] Liu, C. L., & Layland, J. W. (1973). Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment. Journal of the ACM.

[Loc92] Locke, C. D. (1992). Software Architectures for Hard Real-Time
Applications: Cyclic Executives versus Fixed Priority Executives. Real-
Time Systems. Vol. 4 (1).

[LON901 LON (1990). LON Protocol Overview In: Echelon Systems Corporation,
727 University Avenue, Los Gatos, California.

[Lun84] Lundelius, L., & Lynch, N. (1984). An Upper and Lower Bound for Clock
Synchronization. Information and Control. Vol. 62 . (pp. 199-204).

[Mal94] Malek, M. (1994). Responsive Computing. Kluwer Academic Press.

[Mar90] Marzullo, K. (1990). Tolerating Failures of Continuous Valued Sensors.
ACM Trans. on Computer Systems. Vol.: 8 (4). (pp. 284-304).

[Mat96] Mathai, J. (Ed.). (1996). Real-Time Systems. Prentice Hall. London.

[McK94] McKinney, R., & Gordon, T. (1994). ATM for Narrowband Services. Comm.
Magazine. Vol. 32 (4). (pp. 64-72).

[Mey88] Meyer, B. (1988). Object-Oriented Software Construction. Prentice Hall.

[Mie91] Miesterfeld, F., & R., H. (1991). Survey of vehicle multiplexing encoding
techniques In: M. Scarlett (Ed.), Automotive Technology International '92'.
Sterling Publications International. London. (pp. 253-265).

Mills, D. L. (1991). Internet Time Synchronization: The Network Time
Protocol. IEEE Trans. on Comm. Vol. 39 (10). (pp. 1482-1493).

Mok, A. (1983). Fundamental Design Problems of Distributed Systems for
the Hard Real-Time Environment. PhD, Massachusetts Institute of
Technology.

Mok, A. K. (1984). The Design of Real-Time Programming Systems based
on Process Models. Proc. of the IEEE Real-Time Systems Symposium. (pp.

Montgomery, T.A., Pugh, R. D., Leedham, S. T., & Twitchett, S. R. (1996).
FMEA Automation for the Complete Design Process. Annual Reliability and
Maintainability Symposium. Las Vegas, Nevada. IEEE Press. (pp. 30-36).

[Li95]

Vol. 20 (1). (pp. 46-61).

[Mil91]

[Mok83]

[Mok84]

125-1 34).

[Mon96]

324 REFERENCES

[Mos94] Moser, L. E., & Melliar-Smith, P. M. (1994). Probabilistic Bounds on
Message Delivery for the Totem Single-Ring Protocol. Proc. of the Real-
Time System Symposium. San Juan, Puerto Rico. IEEE Press. (pp. 238-248).

[Mul95] Mullender, S. (1995). Distributed Systems, 2nd ed. Addison Wesley.
Reading, Mass, USA.

[Neu95] Neumann, P. G. (1995). Computer Related Risks. Addison Wesley--ACM
Press. Reading, Mass.

[Neu96] Neumann, P. G. (1996). Risks to the Public in Computers and Related
Systems. Software Engineering Notes. Vol.: 21 (5). (p. 18).

[Ols91] Olson, A., & Shin, K. G. (1991). Probabilistic Clock Synchronization in
Large Distributed Systems. Proc. of the 1lth IEEE Distributed Computing
Conference. Arlington, Texas. IEEE Press. (pp. 290-297).

[Par90] Parnas, D. L., van Schouwen, A. J., & Shu Po Kwan (1990). Evaluation of
Safety-Critical Software. Comm. of the ACM. Vol. 33 (6). (pp. 636-648).

[Par92] Parnas , D . L . , & Madey , J . (1992) . Documenta t ion o f Rea l -T ime
Requirements In: K. M. Kavi (Ed.), Real-Time Systems. IEEE Press. (pp.

[Pat90] Patterson, D. A., & Hennessy, J. L. (1990). Computer Architecture, A
Quantitative Approach. Morgan Kaufmann. San Mateo, Cal.

[Pea80] Pease, M., Shostak, R., & Lamport, L. (1980). Reaching Agreement in the
Presence of Faults. Journal of the ACM. Vol. 27 (2). (pp. 228-234).

[Per96] Perry, T. S., & Geppert, L. (1996). Do Portable Electronics Endanger
Flights? IEEE Spectrum. Vol.: 33 (9). (pp. 26-33).

[Pet79] Peters, L. (1979). Software Design: Current Methods and Techniques.
Infotech State of the Art Report on Structured Software Development.
London. Infotech International. (pp. 239-262).

[Pet96] Peterson, I. (1996). Comment on Time on Jan 1, 1996. Software
Engineering Notes. Vol. 19 (March 1996). (p. 16).

[Po195a] Poledna, S. (1995). Fault-Tolerant Real-Time Systems, The Problem of
Replica Determinism. Kluwer Academic Publishers. Hingham, Mass, USA.

[Po195b] Poledna, S. (1995). Tolerating Sensor Timing Faults in Highly Responsive
Hard Real-Time Systems. IEEE Trans. on Computers. Vol. 44 (2). (pp. 181-
191).

Poledna, S., Mocken, T., Schiemann, J., & Beck, T. (1996). ERCOS: An
Operat ing Sys tem for Automot ive Appl ica t ions . SAE In te rna t iona l
Congress. Detroit, Mich. SAE Press. (pp. 1-11).

Poledna, S. (1996). Lecture Notes on "Fault-Tolerant Computing" Technical
University of Vienna, A 1040 Vienna, Treitlstrasse 3/182.

Poledna, S. (1996). Optimizing Interprocess Communication for Embedded
Real-Time Systems. Proc. of the Real-Time System Symposium, Dec. 1996.
Washington D.C. IEEE Press.

[Pow91] Powell, D. (1991). Delta -4: A Generic Architecture for Dependable
Distributed Computing In: Research Reports ESPRIT (Vol. 1). Springer-
Verlag. Berlin, Germany.

Powell, D. (1995). Failure Mode Assumptions and Assumption Coverage In:
B. Randell, J. C. Laprie, H. Kopetz, & B. Littlewood (Ed.), Predictably
Dependable Computing Systems. Springer Verlag. Berlin. (pp. 123-140).

48-59).

[Po196a]

[Po196b]

[Po196c]

[Pow95]

REFERENCES 325

Profibus (1992). The Profibus Standard In: Profibus Nutzerorganisation,
e.d., Hersler Strasse 3 1, D-503689 Wesseling.

Pullum, L. L., & Dugan, J. (1996). Fault-Tree Models for the Analysis of
Complex Computer-Based Systems. 1996 Annual Reliability and
Maintainability Symposium. Las Vegas, Nevada. IEEE Press. (pp. 200-207).

Puschner, P., & Koza, C. (1989). Calculating the Maximum Execution Time
of Real-Time Programs. Real-Time Systems. Vol. 1 (2). (pp. 159-176).

Puschner, P. (1993). Zeitanalyse von Echtzeitprogrammen. PhD, Technical
University of Vienna.

Ramamritham, K., S., J.A., , & Zhao, W. (1989). Distributed Scheduling of
Tasks with Deadlines and Resource Requirements. IEEE Trans. on
Computers. Vol. 38 (8). (pp. 1110-1123).

[Ram96] Ramamritham, K. (1996). Dynamic Priority Scheduling In: M. Joseph (Ed.),
Real-Time Systems.

[Ran75] Randell, B. (1975). System Structure for Software Fault Tolerance. IEEE
Trans. on Software Engineering. Vol. SE-1 (2). (pp. 220-232).

[Ran94] Randell, B., Ringland, G., & Wulf, W. (Ed.). (1994). Software 2000: A View
of the Future of Software. ESPRIT. Brussels.

[Ran95] Randell, B., Laprie, J. C., Kopetz, H., & Littlewood, B. (1995). Predictably
Dependable Computing Systems. Springer Verlag. Heidelberg.

[Rec91] Rechtin, E. (1991). Systems Architecting, Creating and Building Complex
Systems. Prentice Hall. Englewood Cliffs.

[Rei57] Reichenbach, H. (1957). The Philosophy of Space and Time. Dover. New
York.

[Rei95] Reisinger, J., Steininger, A., & Leber, G. (1995). The PDCS
Implementation of MARS Hardware and Software In: B. Randell, J. L.
Laprie, H. Kopetz, & B. Littlewood (Ed.), Predictably Dependable
Computing Systems. Springer Verlag. Heidelberg. (pp. 209-224).

[RMS96] Reliability and Maintainability Symposium, Proceedings are published
annually by the IEEE.

[Rod89] Rodd, M. G., & Deravi, F. (1989). Communication Systems for Industrial
Automation. Prentice Hall.

[Ros93] Rosenberg, H. A., & Shin, K. G. (1993). Software Fault Injection and its
Application in Distributed Systems. Proc. of 23rd Fault- Tolerant
Computing Symposium. IEEE Press. (pp. 208-217).

Rushby, J. M., & von Henke, F. (1993). Formal verification of algorithms
for critical systems. IEEE Trans. on Software Engineering. Vol.: 19 (1).

[Rus93] Rushby, J. (1993). Formal Methods and the Certification of Critical
Systems (Research Report No. SRI-CSL-93-07). Computer Science Lab, SRI,
Menlo Park, Cal.

[SAE95] SAE (1995). Class C Application Requirements, Survey of Known
Protocols, J20056 In: SAE Handbook. SAE Press, Warrendale, PA. (pp.
23.437-23.461).

Sahner, R. A., & Trivedi, K. (1995). Performance and Reliability Analysis
of Computer Systems: An Example Based Approach Using the SHARPE
Software Package. Kluwer Academic Publishers. Hingham, Mass.

[Pro92]

[Pu196]

[Pus89]

[Pus93]

[Ram89]

Prentice Hall. London. (pp. 66-96).

[Rus93a]

(pp. 13-23).

[Sah95]

326 REFERENCES

[Sak95] Sakenas, M., J., S., & Agrawala, A. (1995). Design and Implementation of
Maruti-II In: S. H. Son (Ed.), Advances in Real-Time Systems. Prentice
Hall. Engelwood Cliffs, N.J. (pp. 73-102).

Saltzer, J., Reed, D. P., & Clark, D. D. (1984). End-to-End Arguments in
System Design. ACM Trans. on Computer Systems. Vol. 2 (4). (pp. 277-
288).

Schlichting, R. D., & Schneider, F. B. (1983). Fail-Stop Processors: An
Approach to Designing Fault-tolerant Computing Systems. ACM Trans. on
Computing Systems. Vol. 1 (3). (pp. 222-238).

Schwabl, W. (1988). The Effect of Random and Systematic Errors on Clock
Synchronizatin in Distributed Systems. PhD Thesis, Technical University
of Vienna, A 1040 Vienna, Treitlstrasse 3/182.

Schneider, F. B. (1986). A Paradigm for Reliable Clock Synchronization.
Proc. Advanced Seminar Real-Time Local Area Networks. Bandol France,
published by INRIA, (pp. 85-104).

Schneider, F. B. (1990). Implementing Fault-Tolerant Services Using the
State Machine Approach: A Tutorial. ACM Computing Surveys. Vol. 22 (4).

[Sch93] Schütz, W. (1993). The Testability of Distributed Real-Time Systems.
Kluwer Academic Publishers. Boston, MA.

[Sch96] Schedl, A. V. (1996). Design and Simulation of Clock Synchronization in
Distributed Systems. PhD Thesis, Technical University of Vienna, A 1040
Wien, Treitlstrasse 3/182.

Segall, L., Vrsalovic, D., Sieworek, D., Yaskin, D., Kownacki, J., Baraton,
J., Rancey, D., Robinson, A., & Lin, T. (1988). FIAT - Fault Injection based
Automated Testing Environment. Proc. FTCS 18, IEEE Press. (pp. 102-
107).

Serlin, O. (1972). Scheduling of Time Critical Processes. Spring Joint
Computer Conference. AFIPS. (pp. 925-932).

Sevcik, F. (1981). Current und Future Concepts of FMEA. Reliability and
Maintainability Symposium. Philadelphia, USA. IEEE Press. (pp. 414-421).

Shaw, A. C. (1989). Reasoning About Time in Higher-Level Language
Software. IEEE Trans. on Software Engineering. Vol. SE-15. (pp. 875-
889).

Sha, L., Rajkumar, R., & Lehoczky, J. P. (1990). Priority Inheritence
Protocols: An Approach to Real-Time Synchronization. IEEE Transactions
on Computers. Vol.: 39 (9). (pp. 1175-1185).

[Sha94] Sha, L., Rajkumar, R., & Sathaye, S. S. (1994). Generalized Rate-
Monotonic Scheduling Theory: A Framework for Developing Real-Time
Systems. Proc. of the IEEE. Vol. 82 (1). (pp. 68-82).

Shin, K. G., & Ramanathan, P. (1987). Clock Synchronization in a Large
Multiprocessor System in the Presence of Malicious Faults. IEEE Trans. on
Computers. Vol. C-36 (1). (pp. 2-12).

[Shi91 Shin, K. G. (1991). HARTS: Distributed Real-Time Architecture. IEEE
Computer. Vol. 24 (5). (pp. 25-35).

[Shi95] Shin, K. G. (1995). A Software Overview of HARTS: A Distributed Real-
Time System In: S. H. Son (Ed.), Advances in Real-Time Systems. Prentice
Hall. Englewood Cliffs, N.J. (pp. 3-22).

[Sal84]

[Sch83]

[Sch88]

[Sch86]

[Sch90]

(pp. 299-319).

[Seg88]

[Ser72]

[Sev81]

[Sha89]

[Shag90]

[Shi87]

REFERENCES 327

[Sim81] Simon, H. A. (1981). Sciences of the Artificial. MIT Press, Cambridge.

[Son94] Son, S. H. (Ed.). (1994). Advances in Real-Time Systems. Prentice Hall.

[Spr89] Sprunt, B., Sha, L., & Lehoczky, J. (1989). Aperiodic Task Scheduling for
Hard Real-me Systems. Real-Time Systems. Vol.: 1 (1). (pp. 27-60).

[Sta88] Stankovic, J . A. , & Ramamritham, K. (Ed.) . (1988). Hard Real-Time
Systems. IEEE Press.

[Sta91] Stankovic, J. A., & Ramamritham, K. (1991). The Spring Kernel: A new
Paradigm for Real-Time Systems. IEEE Software. Vol.: 8 (3). (pp. 62-72).

[Sta92] Stankovic, J. A., & Ramamritham, K. (Ed.). (1992). Advances in Real-Time
Systems. IEEE Press.

[Sta95] Stallings, W. (1995). Operating Systems. Prentice Hall. Englewood Cliffs,
N.J.

[Sur95] Suri, N., Walter, C. J., & Hugue, M. M. (Ed.). (1995). Advances in Ultra-
Dependable Systems. IEEE Press.

[Tan88] Tanenbaum, A. S. (1988). Computer Networks. Prentice Hall. New York.

[Tan95] Tanenbaum, A. S. (1995). Distributed Operating Systems. Prentice Hall.
Englewood Cliffs, N.J.

[The95] Thevenod-Fosse, P., Waeselynck, H., & Crouzet, Y. (1995). Software
Statistical Testing In: B. Randell, J. L. Laprie, H. Kopetz, & B. Littlewood
(Ed.) , Predictably Dependable Computing Systems. Springer Verlag.
Heidelberg.

[Tin95] Tindell, K. (1995). Analysis of Hard Real-Time Communications. Real-
Time Systems. Vol. 9 (2). (pp. 147-171).

[Tis95] Tisato, F., & DePaoli, F. (1395). On the Duality between Event-Driven and
Time Driven Models. Proc. of 13th. IFAC DCCS 1995. Toulouse France.

Tokuda, H., & Mercer, C. W. (1989). ARTS: A Distributed Real-Time Kernel.
ACM Sigops Operating Systems Review. Vol. 23 (3). (pp. 29-53).

Tokuda, H., Nakajima, T., & Rao, P. (1990). Real-Time Mach: Towards a
Predictable Real-Time System In: J. A. Stankovic & K. Ramamritham (Ed.),
Advances in Real-Time Systems. IEEE Press. (pp. 237-246).

Traverse, P. (1988). AIRBUS and ATR System Architecture and Specification
In: U. Voges (Ed.) Software Diversity in Computerized Control Systems.
Springer-Verlag.(pp.95-104)

[Ver93] Verissimo, P. (1993). Real-Time Communication In: S. Mullender (Ed.),
Distr ibuted Systems. Addison-Wesley- ACM Press . Reading, Mass .

[Ver94] Verissimo, P. (1994). Ordering and Timeliness Requirements of Dependable
Real-Time Programs. Real-Time Systems. Vol. 7 (3). (pp. 105-128).

[Vet95] Vetter, R. J. (1995). ATM Concepts, Architectures, and Protocols. Comm.

[Vit60] Vitruvius (1960). The Ten Books on Architecture, written 0027 B.C.,

[Vog88] Voges, U. (Ed.). (1988). Software Diversity in Computerized Control

(pp. 31-36).

[Tok89]

[Tok90]

[Tra88]

(pp .447 -4 8 6).

ACM. Vol. 38 (2). (pp. 30-38).

translated by M. H.Morgan. Dover Publications. New York.

Systems. Springer-Verlag. Wien.

328 REFERENCES

[Vrc94]

[Web91]

[Wen78]

Vrchoticky, A. (1994). The Basis for Static Execution Time Prediction. PhD
Thesis, Technical University of Vienna.

Webber, S. (1991). The Stratus Architecture. Proc. FTCS 21. IEEE Press.

Wensley, J. H., Lamport, L., Goldberg, J., Green, M. W., Levitt, K. N.,
Melliar-Smith, P. M., Shostack, R. E., & Weinstock, C. B. (1978). SIFT:
The Design and Analysis of a Fault-Tolerant Computer for Aircraft Control.
Proc. IEEE. Vol. 66 (10). (pp. 1240-1255).

[Wil83] Williams, T. W. (1983). Design for Testability--A Survey. Proc. of the

[Wit90] Withrow, G. J. (1990). The Natural Philosophy of Time. Clarendon Press.
Oxford.

[Woo90] Wood, S. P. (1996). The IEEE-P1451 Transducer to Microprocessor
Interface. Sensors. Vol. 13 (6). (pp. 43-48).

[Xu90] Xu, J., & Parnas, D. (1990). Scheduling Processes with Release Times,
Deadlines, Precedence, and Exclusion Relations. IEEE Trans. on Software
Engineering. Vol. 16 (3). (pp. 360-369).

Yang, Z., & Marsland, T. A. (1993). Global States and Time in Distributed
Systems. IEEE Computer Society Press. Los Alamitos, Cal.

(pp. 512-519).

IEEEE. Vol. 71 (1). (pp. 98-112).

[Yan93]

Index

analysis, 4
shower, 47

A

ALARP, 258
analog input/output, 203
antilock braking system, 19, 133

API, 213, 215

absolute timestamp, 48

abstraction, 30, 37, 72, 98, 266
acceptance test, 127, 271

accidents aperiodic task, 230
Ariane 5, 137
fighter plane crash, 153
Gulf war, 49 application
Three Mile Island, 148
Warsaw plane crash, 104

temporal, 14, 23, 102, 110, 158,
204, 270, 293
interval, 4, 103, 110 ARINC
of analog signal, 203

program interface (API), 213, 215
specific fault tolerance, 126

event-triggered, 15, 83, 134
time-triggered, 15, 83, 134

629 protocol, 114, 145, 162, 164
RTCA/DO 178B, 138

accuracy, architecture

acknowledgment schema of TTP, 174
action delay, 109 assumption coverage, 15, 72, 248,

ATM, 155, 295
gateway, 295

of PAR, 151
versus accuracy interval, 110

fault-tolerant, 205 automotive electronics, 18
actuator, 203 atomicity requirement, 24

adversary argument, 229 availability, 11
agreed data, 4, 196
agreement Bon input, 115

protocol, 57, 196
semantic, 197
syntactic, 196 backbone network, 157
Byzantine, 121

monitoring, 4

babbling idiot failure, 130, 156
back-pressure flow control, 149, 217,

bandwidth, 160
basic causes of replica non-determinism,

alarm

113

330 INDEX

benign failure, 121

best-effort system, 14, 237 communication
BG, 173, 255, 291
bit length of a channel, 160
blocking synchronization statement, 75,

bus guardian (BG), 173, 255, 291
bus versus ring, 149
Byzantine

CNI, 31, 36, 172, 175, 273

network interface (CNI), 31, 36,
172, 175, 273
requirements, 146

communication system, 33, 145
event triggered, 35, 83, 159
time triggered, 36, 83, 171

234

comparison of protocols, 164
compiler analysis, 87

complex (C) task, 75, 89, 114, 214, 278
complexity, 17, 37, 124, 130, 138,

component cycle, 135
composability, 34, 107, 146, 173, 272,

computational cluster, 2, 77
computer

failure, 60, 121, 133
error term, 63
resilient fault-tolerant unit, 133,
2 8 1 215, 250, 266, 273, 294

289
C
C-state of TTP, 179, 183, 184
C-task, 75, 89, 114, 214, 278
cache reload time, 89
calibration point, 204
CAN protocol, 35, 114, 145, 161, 164,

195, 236
causal order, 46
CCF, 218 failure, 121
central master synchronization, 60 contact bounce, 204

certification, 1, 10, 40, 246 context switches, 89
chance fault, 124 control

algorithm 7 checkpoint, 13, 135
engineering, 5
error propagation, 36 chronoscopy property, 64

classification of logical, 82
formal methods, 249 loop, 6
real-time systems, 12 of pace, 13
scheduling algorithms, 228 temporal, 82

client-server interaction, 8 1

clock controlled object, 2

delay, 7
safety in cars, 19

conceptual model, 72
consistent

comparison problem, 114

controllability of the test inputs, 251

controller state of TTP, 179, 183, 184
convergence function, 59, 62

cooperative scheduling, 221
correction of the clock,

drift, 48
physical, 48
reference, 48
failure modes, 49
synchronization, internal, 59
synchronization, external, 65 state, 64
synchronization unit (CSU), 62, 286 rate, 64

closed-loop control, 20
cluster, 2 CRC calculation, 183

task sections, 216

crash failure, 121

compiler, 293 critical
computational, 2, 77, 286
controlled, 2 failure mode, 10
cycle, 163, 173 instant, 232
operator, 2 CSU, 62, 286

INDEX 331

electromagnetic interference (EMI), 168,

elevator example, 84
embedded systems, 16, 76, 81, 211

255
D
data

agreed, 4, 196
collection, 3
efficiency of TTP/A, 188
measured, 4, 196 market, 18
raw, 4, 196
sharing interface, 34

characteristics, 17

operating system, 221
EMI, 168, 255

database erosion, 123 end-to-end
dead time, 7 acknowledgment, 148

deadline, 2 CRC, 256, 287

decomposition of a system, 272
definition of the I/O interfaces, 81, 277

delay jitter, 61
delivery order, 47
dense time, 55
dependability, 9, 39, 276

error detection, 155, 257
protocol, 21, 148

engine control, 22
ERCOS 221, 278
error, 120, 122

detection, 13, 40, 125, 126, 147,
186, 203, 219, 222, 258
detection coverage, 40, 256

containment region, 39, 123, 267,

analysis, 258
constraints, 271 detection latency, 9

diversity, 137 28 8
tradeoffs, 11, 265

for testability, 252 ESTEREL, 83
for validation, 10

design

essential system functions, 270

ET versus TT, 164
ET, 16, 35, 83, 130, 134, 164, 213,

event, 15

deterministic algorithms, 115

development cost, 16 217
digital input/output, 204
digitalization error, 48 information, 15, 31
distributed message, 32

RT object, 102 observation, 101
synchronization algorithm, 61 trigger, 83

diverse software versions, 138
double execution of tasks, 220
drift

event-triggered (ET), 16, 35, 83, 130,
134, 164, 213, 217,
communication system, 35
media-access protocols, 159
observation, 34, 101, 107, 146
operating system, 213, 293
with C-Tasks, 215
with S-Tasks, 213

exception handling, 130
expansion and contraction of the h-state,

explicit

offset, 59
rate, 49

dual role of time, 194

duplicate execution of tasks, 128, 257,

duration, 15, 46, 48

dynamic 91

287 exact voting, 133, 177

of the action delay, 110

schedulers, 228, 231, 236
fault tree, 259 flow control, 149

synchronization, 216

E extensibility, 36

EDF, earliest-deadline-first algorithm, external
232 clock synchronization 50, 65, 295

332 INDEX

control, 32
fault, 124

FMEA, 260
formal methods, 138, 248

in the real world, 248
benefits, 249

externally visible h-state, 111

FTA, 60, 185
FTPP, 281

FTU, 76, 115, 131, 136, 149, 172,

F
fail

operational system, 14
safe system, 14

fail-silent layer, 177

failure, 121 Byzantine, 133

nodes, 130, 131 286 functional
fail-stop failure, 121 coherence, 275

intent, 77
requirements, 3

failure, 119

conflicts in protocol design, 157
limits in time measurement, 48, 55

177, 275, 281, 286, 294

Byzantine
classification, 120 fundamental
effect, 121
mode and effect analysis (FMEA),
260
modes of a clock, 49
perception, 121
rate, 9
two faced, 121 CNI 37

fault, 41, 124
boundaries, 124 granularity, 52
categorization, 40 precision, 50
classification, 124 accuracy, 50
hypothesis, 73 GPS, 65, 295
injection, 253 granularity, 48
tree analysis, 259

actuators, 205
average algorithm, 60
system, 119, 125,
unit (FTU), 76, 115, 131, 136, 149,
172, 177, 275, 281, 286, 294

G
gateway, 33, 36, 295

global time, 52, 95, 110, 151,

of a clock, 48
of the global time, 52

ground state, 92, 252
grounding system, 207

guaranteed response, 14

fault- tolerant

feasibility analysis, 267 H
FI, 253, 254
field bus, 156, 185

h-state 76, 91, 111, 123, 135, 179,
213, 271, 275

nodes, 292 expansion, 91
TTP/A, 185 and testing, 252

FIP, 163, 164
firm deadline, 2
flexibility, 147 hard

and fault injection, 258
Hamming Distance, 127

in static schedules, 239
versus error detection, 164

back pressure, 149, 153, 161, 217
explicit, 149 channel, 109
implicit, 15 1 interface, 79
in real-time systems, 153

deadline, 2
real-time computer system, 2, 12

flow control, 149, 217, hazard, 258
hidden

INDEX 333

high error detection coverage mode, 177,

history (h) state, 76, 91, 111, 123,

interprocess communication, 216

interrupt, 16, 32, 81, 84, 101, 201

287 in ERCOS, 222

135, 179, 213, 271, 275
minimization, 135 interval measurement, 53

monitoring, 202

irrevocable action, 109

issues of representation, 74

horizontal structuring, 266
human perception delay, 6
hypothesis

fault, 72
load, 72 J

jitter, 8, 61, 146
reduction, 62

jitterless system, 9
I
i-state, 76, 137, 257
idempotency, 110
IEC K

604 standard, 258
801-4 standard, 255
1508 standard, 260

IEEE P1451 standard, 207
implicit layering, 266

flow control, 151 leader-follower protocol, 11 6
synchronization 217 least-laxity (LL) algorithm, 232

inconsistent failure, 121 legacy system, 34, 182, 268, 274
indirect observation, 100 life-cycle cost, 16
industrial plant automation, 19 limit to protocol efficiency, 160
inexact voting, 133, 139 LL, 232
initialization (i) state, 76, 137, 257 load hypothesis, 72
input/output, 22, 78, 81, 193, 273 logical control, 82
instance, 46 LON protocol, 160
instrumentation interface, 2, 194 LUSTRE, 83
intelligent

kernelized monitor, 233

L

M
instrumentation, 206
interface, 78,
product, 16 macrogranule, 52

interactionmatrix, 272 MAFT, 280
interacti ve-consistency, 60 maintainability, 11
interface, 2, 11, 33, 39, 74, 77, 148,

154, 178 major decision point, 112
input/output, 193, 196, 203
message, 78
node, 75
obligation, 80
world, 78 Manchester code, 167

maintenance cost, 16, 20

malicious failure, 121
malign failure, 10, 121
man-machine interface 5, 17, 78

MAP MMS, 80
mapping between functions and nodes,

intermittent failure, 122
internal clock synchronization, 50, 59
international atomic time (TAI), 50
interoperability, 36 mark method, 47

30

334 INDEX

MARS, 62, 286 network

maximum drift rate, 49 time protocol (NTP), 66
maximum response time, 8 1
measured value, 4, 7, 196 as a unit of failure, 129
mechatronics, 42 interface, 8 1

restart, 137
structure, 76, 291 media access protocols, 159

MEDL, 173, 181, 186, 275, 293 temporal obligation, 80

nominal drift rate, 64 name mapping, 182

non-preemptivemembership

service, 102, 133 S-tasks, 214
vector, 179 scheduling, 228

NRZ code, 167 point, 134

NTP time format, 66 event, 33
descriptor list (MEDL), 173, 181,

interface, 78
schedules, 274 object,

state, 33

operating system, 256 management, 35

node, 75, 291

message

186, 275, 293 O

delay, 7
real-time (RT), 102, 106, 111
distributed RT, 102

microarchitecture timing analysis, 88

microtick, 48 obligation
minimizing the h-state, 135 of the client, 80, 146
minimum service level, 129, 271 of the server, 80, 146
MMI, 5, 78, observability, 251
mode change, 240 observation, 4, 15, 99

deferred, 179
immediate, 179 (OLT), 222, 223

building, 72, 271
formalization, 248

168 open-loop control, 20

interrupts, 202, 220, 222
task execution times, 219

off-line software development tool

model offset, 49

OLT, 222, 223
omniscient observer, 48

modified frequency modulation (MFM),

monitoring optimization of operating system
functions, 223

causal, 46
delivery, 47
temporal, 46

order, 46
MTBF, 11
MTTF, 10
MTTR,11
multicast, 24, 146
multilevel system, 140
multimedia, 21

OSI reference model, 154
overhead

of a trigger task, 85
overhead of an interrupt, 84

N P
name mapping, 181
NBW protocol, 173, 180, 217

PAR protocol, 145, 150,
action delay, 151,
for real-time, 153, 155

parametric RT image, 105

INDEX 335

partitioning, 266
peak-load performance, 5, 13, 252

perfect clock, 49 real-time (RT)
periodic architecture projects, 278

tasks, 229 clock, 48
clock interrupt, 16

permanence of messages, 108
permanent failure, 122
phase-

raw data element, 4, 196
read-only memory, 76

communication system, 3 1
communication architecture, 155
computer system, 2
database 4, 13, 289
entity, 3, 98
image, 4, 101
network, 156

physical object, 101, 106, 111
operating system, 2 12

systems market, 16
transaction, 24, 71, 86, 104, 201,

aligned transaction, 104, 198
sensitive RT image, 106

clock, 48
fault injection, 254 system, 2
installation, 42, 207
interface, 74
layer, 166 270
second, 46 reasonableness condition, 52

redundancy management layer, 177
redundant sensors, 294
reference clock, 48
reintegration

pin-level fault-injection, 255
plant automation system, 19
pocket calculator example, 91
polling, 200
precedence, 54

precision, 50

preemptive 133, 159, 252, 293

of a repaired node, 135
graph, 237 point, 135

reliability, 9, 10, 253
replica determinism, 40, 76, 111, 125,

replicated field buses, 295
requirements, 3

of the FTA, 63

S-tasks, 214
scheduling, 221, 228

event, 4, 47
fault, 41

ceiling protocol, 234 temporal, 6
inversion, 234

analysis, 269
dependability, 9
functional, 3

primary

priority latency, 9

resource
process lag, 7
PROFIBUS, 161, 164 controller 78
program response time

adequacy, 10, 15

functionality constraints, 87 of a TTP/A, 187
structure constraints, 87 requirements, 6

responsive system, 39
resynchronization interval, 59
rise time, 7
risk, 258
roll-back/recovery, 13
rolling mill, 23, 82, 95

propagation delay, 160
protocol latency, 146

R
rapid prototyping, 267
rate

correction, 64
monotonic algorithm, 23 1

336 INDEX

SL, 83
smallest replaceable unit (SRU), 11, 76
SOC, 3, 85, 99, 115,
soft real-time computer system, 3, 12
software

S
S-task, 75, 82, 86, 92, 213, 214, 221,

SAE
277, 294

J 1587 message specification, 80
J 1850 standard, 35, portability, 215
J 20056 class C requirements 170,
293 implemented fault injection, 257

reliability growth, 260

safe state, 9, 14
safety, 3, 10, 13, 27, 41, 121, 138,

170, 180, 246, 258, 271, 287
bag, 139
case, 27, 40, 246
margin, 41 sporadic

real-time computer system, 3
software, 42

frequency, 7
of analog values, 198 stable
of digital values, 198
period, 7, 9
point, 8, 197

source code analysis, 86
space-time lattice, 58
sparse time, 55, 57, 115
sphere of control (SOC), 3, 85, 98

request, 239
server task, 240

safety-critical

SPRING,279
SRU, 11, 28, 149, 172, 176, 184, 277

layer 176

interface, 10
intermediate forms, 272

sampling 197

standardized message interfaces, 80
scalability, 36 state
schedulability test, 229 attribute, 15

for the priority ceiling protocol, 236
schedule estimation, 106

period, 230
scheduling, 221, 227

dependent tasks, 233
dynamic, 231
independent tasks, 231
rate-monotonic, 23 1
static, 237

correction, 64

history (h), 76, 91, 111, 123, 135,
179, 213, 271, 275
information, 15, 32
initialization (i), 76, 137, 257
information, 32
message, 32
observation, 100
variables, 3

configuration, 17
control structure, 115

static
search tree, 238
security, 12

semantic agreement, 196
semaphore operations, 216 scheduling, 237
sensor, 203 step function, 6

serviceable interface, 11 STRATUS, 287
shadow structuring,

data, 4 stochastic drift rate, 64

master, 61 horizontal, 266
node, 132 vertical, 266

signal conditioning, 4
signal shape, 168 synchronization
simple (S) task, 75, 82, 86, 92, 213, central master, 60

condition, 59
simultaneous events, 46 distributed, 61

sufficient schedulability test, 229

214, 221, 277, 294

INDEX 337

external, 65 as data, 194
internal, 59 division-multiple-access (TDMA),

synchronizing code, 167 151, 176

synchronous communication, 167
syntactic agreement, 196
system,

encoded signals, 205
formats, 66
gateway, 65, 66
management, 2 18
measurement, 5 1
message, 65
operating system, 214, 293
protocol (TTP),
59, 145, 163, 164, 175, 181, 185,
187, 195, 247, 291, 294
redundant task execution, 287
server, 65
services, 219
stamping, 48, 219

TADL, 212 standards, 50
TAI, 50 trigger, 15, 83

task, 75
aperiodic, 230 164, 214
complex (C), 75, 89, 114, 214, 278
descriptor List (TADL), 212
management, 2 12
model of ERCOS, 221
periodic, 6, 84, 231
simple (S), 75, 82, 86, 92, 213,
214, 221, 277, 294
sporadic, 229, 230, 239

TDMA, 163, 176,
round, 163

temporal
accuracy, 14, 23, 102, 110, 158,
204, 270, 293
behavior, 73
control, 32, 82

error, 123 encapsulation, 146

obligation, 80 failure, 122
order, 46 fault, 124
requirements, 6

task, 85
coverage, 252

signal,, 194
data selection, 252

mechanisms, 15
driver in a distributed system, 251
of a decomposition 275
probe effect, 251 triple-modular

redundancy (TMR), 131, 139, 175,
177, 285
redundant (TMR) actuator, 206

complexity, 17, 37, 124, 130, 138,
215, 250, 266, 273, 294
design, 265
multilevel, 140

error compensation, 64
fault tolerance, 125

systematic

T

time-triggered (TT) 16, 34, 59, 83, 134,

observation, 4, 100
system, 15, 83
architecture (TTA), 285, 288

timed message 194
timestamp, 48
timing

failure, 120
schema, 87

TMR, 131, 139, 175, 177, 285
token bus, 161
top event of the fault tree, 259
TPU, 219, 291
transaction processing system, 12
transient

transmission codes, 166
trigger 15

test, 250

testability, 252, 276
thrashing, 152

throughput-load dependency, 152
tick of a clock, 15, 48
time

as control, 194

TT, 16, 34, 59, 83, 134, 164, 214
TTA, 285, 288
TTP/A protocol, 175, 185, 187, 294

338 INDEX

TTP/C protocol, 59, 145, 163, 164, 175, W
181, 195, 247, 291
controller, 173, 291
membership service, 184
frame, 183

warm standby, 132
watchdog, 14, 220
WCAO, 85, 89, 211, 292

WCET, 73, 81, 86, 104, 127, 139, 201,
213, 252, 274

wide-area real-time systems, 295
world interface, 78
worst-case administrative overhead

(WCAO), 85, 89, 211, 292
worst-case communication time

worst-case execution time
(WCET), 73, 81, 86, 104, 127, 139,
201, 213, 252, 274
of C-tasks, 89
of S-tasks, 86

TUR, 239 WCCOM, 104

U
UART, 175, 177, 185, 289
ultra-high dependability, 10, 261
universal time coordinated (UTC), 51
UNIX-based systems, 212

UTC, 51 (WCCOM), 104

V
validation, 245
value failure, 120
vertical structuring, 266
voting, 11 1, 206, 280

exact, 133, 177
inexact, 133, 139

VOTRICS,139

